

iOS Apprentice
Matthijs Hollemans

Copyright ©2016 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

License
By purchasing iOS Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in iOS Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are
included in iOS Apprentice in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from iOS
Apprentice book, available at www.raywenderlich.com”.

• The source code included in iOS Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in iOS Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students;
they would need to purchase their own copies.

iOS Apprentice

raywenderlich.com 2

About the author
Matthijs Hollemans is a mystic who lives at the top of a mountain
where he spends all of his days and nights coding up awesome
apps. Actually he lives below sea level in the Netherlands and is
pretty down-to-earth but he does spend too much time in Xcode.
Check out his website at www.matthijshollemans.com.

About the cover
Striped dolphins live to about 55-60 years of age, can travel in pods numbering in
the thousands and can dive to depths of 700 m to feed on fish, cephalopods and
crustaceans. Baby dolphins don't sleep for a full a month after they’re born. That
puts two or three sleepless nights spent debugging code into perspective, doesn't
it? :]

iOS Apprentice

raywenderlich.com 3

Table of Contents: Extended
Tutorial 2: Checklists 6..

Your own to-do app 6...
Playing with table views 10...
Model-View-Controller 35...
Adding new items to the checklist 59...
The Add Item screen 70..
Editing existing checklist items 109..
Saving and loading the checklist items 126...
Multiple checklists 146..
Putting to-do items into the checklists 170..
Using UserDefaults to remember stuff 190..
Improving the user experience 202...
Extra feature: local notifications 233..
That’s a wrap! 260..

iOS Apprentice

raywenderlich.com 5

2Tutorial 2: Checklists
By Matthijs Hollemans

Your own to-do app
To-do list apps are one of the most popular types of app on the App Store, second
only to fart apps. The iPhone even comes with the Reminders app (but fortunately
no built-in fart app).

Building a to-do list app is somewhat of a rite of passage for budding iOS
developers, so it makes sense that you create one as well.

Your own to-do list app, Checklists, will look like this when you’re finished:

The finished Checklists app

The app lets you organize to-do items into lists and then check off these items once

raywenderlich.com 6

you’re done with them. You can also set a reminder on a to-do item that will make
the iPhone pop up an alert on the due date, even when the app isn’t running.

As far as to-do list apps go, Checklists is very basic, but don’t let that fool you.
Even a simple app such as this already has five different screens and a lot of
complexity behind the scenes.

Table views and navigation controllers
This tutorial will introduce you to two of the most commonly used UI (user
interface) elements in iOS apps: the table view and the navigation controller.

A table view shows a list of things. The three screens above all use a table view.
In fact, all of this app’s screens are made with table views. This component is
extremely versatile and the most important one to master in iOS development.

The navigation controller allows you to build a hierarchy of screens that lead
from one to another. It adds a navigation bar at the top with a title and a “back”
button.

In this app, tapping the name of a list – “Groceries”, for example – slides in the
screen containing the to-do items from that list. The button in the upper-left corner
takes you back to the previous screen with a smooth animation. Moving between
those screens is the job of the navigation controller.

Navigation controllers and table views are often used together:

The grey bar at the top is the navigation bar. The list of items is the table view.

Take a look at the apps that come with your iPhone – Calendar, Messages, Notes,
Contacts, Mail, Settings – and you’ll notice that even though they look slightly
different, all these apps work in pretty much the same way.

That’s because they all use table views and navigation controllers:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 7

These are all table views inside navigation controllers

(The Music app also has a tab bar at the bottom, something you’ll learn about in
the next tutorial.)

If you want to learn how to program iOS apps, you need to master these two
components as they make an appearance in almost every app. That’s exactly what
you’ll focus on in this tutorial. You’ll also learn how to pass data from one screen to
another, a very important topic that often puzzles beginners.

When you’re done with this lesson, the concepts view controller, table view, and
delegate will be so familiar to you that you can program them in your sleep
(although I hope you’ll dream of other things).

This is a very long read with a lot of source code, so take your time to let it all sink
in. I encourage you to experiment with the code that you’ll be writing. Change stuff
and see what it does, even if it breaks the app.

Making mistakes that result in bugs, tearing your hair out in frustration, the light
bulb moment when you realize what’s wrong, the satisfaction of fixing the bug –
they’re all essential parts of the learning process.

There’s no doubt: playing with the code is the quickest way to learn!

By the way, if something is unclear to you – for example, you may wonder why
method names in Swift look so funny – then don’t panic! Have some faith and keep
going… everything will be explained in due time.

The Checklists app design
Just so you know what you’re in for, here is an overview of how the Checklists app
will work:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 8

All the screens of the Checklists app

The main screen of the app shows all your “checklists” (1). You can create multiple
lists to organize your to-do items.

A checklist has a name, an icon, and zero or more to-do items. You can edit the
name and icon of a checklist in the Add/Edit Checklist screen (2) and (3).

You tap on the checklist’s name to view its to-do items (4).

A to-do item has a description, a checkmark to mark the item as done, and an
optional due date. You can edit the item in the Add/Edit Item screen (5).

iOS will automatically notify the user of checklist items that have their “remind me”
option set (6), even if the app isn’t running (7). That’s a pretty advanced feature
but I think you’ll be up for the task.

You can find the full source code of this app in this tutorial’s Resources folder, so
have a play with it to get a feel for how it works.

Done playing? Then let’s get started!

Important: The iOS Apprentice tutorials are for Xcode 8.0 and better only. If
you’re still using Xcode 7, please update to the latest version of Xcode from
the Mac App Store.

But don’t get carried away either – often Apple makes beta versions available

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 9

of upcoming Xcode releases. Please do not use an Xcode beta to follow this
tutorial. Often the beta versions break things in unexpected ways and you’ll
only end up confused. Stick to the official versions for now!

Playing with table views
Seeing as table views are so important, you will start out by examining how they
work. Making lists has never been this much fun!

Because smart developers split up the workload into small, simple steps, this is
what you’re going to do in this first section:

1. Put a table view on the app’s screen

2. Put data into that table view

3. Allow the user to tap a row in the table to toggle a checkmark on and off

Once you have these basics up and running, you’ll keep adding new functionality
over the course of this tutorial until you end up with the full-blown app.

➤ Launch Xcode and start a new project. Choose the Single View Application
template:

Choosing the Xcode template

Xcode will ask you to fill out a few options:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 10

Choosing the template options

➤ Fill out these options as follows:

• Product Name: Checklists

• Team: Just leave this to the default setting

• Organization Name: Your name or the name of your company

• Organization Identifier: Use your own identifier here, using reverse domain name
notation

• Language: Swift

• Devices: iPhone

• Use Core Data, Include Unit Tests, Include UI Tests: these should be off.

➤ Press Next and choose a location for the project.

You can run the app if you want but at this point it just consists of a white screen.

Checklists will run in portrait orientation only but the project that Xcode just
generated also includes the landscape orientation.

➤ Click on the Checklists project item at the top of the project navigator and go to
the General tab. Under Deployment Info, Device Orientation, make sure that
only Portrait is selected.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 11

The Device Orientation setting

With the landscape options disabled, rotating the device will no longer have any
effect. The app always stays in portrait orientation.

Upside down

There is also an Upside Down orientation but you typically won’t use it.

If your app supports Upside Down, users are able to rotate their iPhone so that
the home button is at the top of the screen instead of at the bottom.

That may be confusing, especially when the user receives a phone call: the
microphone is at the wrong end with the phone upside down.

iPad apps, on the other hand, are supposed to support all four orientations
including upside-down.

Editing the storyboard
Xcode created a basic app that consists of a single view controller. Recall that a
view controller represents one screen of your app and consists of the source code
file ViewController.swift and a user interface design in Main.storyboard.

The storyboard contains the designs of all your app’s view controllers inside a single
document, with arrows showing the flow between them. In storyboard terminology,
each view controller is named a scene.

You already used a storyboard in Bull’s Eye but in this tutorial you will unlock the
full power of storyboarding.

➤ Click on Main.storyboard to open Interface Builder.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 12

The storyboard editor with the app’s only scene

The scene has the dimensions of the iPhone 6s and iPhone 7. I used the View as:
panel at the bottom to switch to the slightly smaller iPhone SE because that takes
up less room in the book. However, it does not matter which device size you choose
to edit the storyboard: the app will automatically resize to fit all iPhone models.

➤ Select View Controller in the outline pane on the left.

Tip: Recall that the outline pane shows the view hierarchy of all the scenes in the
storyboard. If you cannot see the outline pane, then click the small arrow button at
the bottom of the Interface Builder window to toggle its visibility.

This button shows and hides the outline pane

➤ Press delete on your keyboard to remove the View Controller Scene from the
storyboard. The canvas should be empty and the outline pane says “No Scenes”.

You’re deleting this scene because you don’t want a regular view controller but a
so-called table view controller. This is a special type of view controller that
makes working with table views a little easier.

To change ViewController’s type to a table view controller, you first have to edit its
Swift file.

➤ Click on ViewController.swift to open it in the source code editor and change
the following line from this:

class ViewController: UIViewController {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 13

into this:

class ChecklistViewController: UITableViewController {

With this change you tell the Swift compiler that your own view controller is now a
UITableViewController object instead of a regular UIViewController.

Remember that everything starting with “UI” is part of UIKit. These pre-fabricated
components serve as the building blocks for your own app.

When Xcode made the project, it assumed you wanted the ViewController object to
be built on top of a basic UIViewController, but here you’re changing it to use the
UITableViewController building block instead.

You also renamed ViewController to ChecklistViewController to give it a more
descriptive name. This is your own object – you can tell because its name doesn’t
start with UI.

Over the course of this tutorial you will add data and functionality to the
ChecklistViewController object to make the app actually do things. You’ll also add
several new view controllers to the app.

➤ In the Project navigator on the left, click once to select ViewController.swift,
and then click again to edit its name. (Don’t double-click too fast or you’ll open the
Swift file inside a new source code editor window.)

Change the filename to ChecklistViewController.swift:

Renaming the Swift file

You may now get a warning: “The document could not be saved. The file has been
changed by another application.” Click Save Anyway to make it go away.

➤ Go back to the storyboard and drag a Table View Controller from the Object
Library (bottom-right corner) into the canvas:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 14

Dragging a Table View Controller into the storyboard

This adds a new Table View Controller scene to the storyboard.

➤ Go to the Identity inspector (the third tab in the inspectors pane on the right
of the Xcode window) and under Custom Class type ChecklistViewController (or
choose it using the small arrow).

Tip: When you do this, make sure the actual Table View Controller is selected, not
the Table View inside it. There should be a thin blue border around the scene.

Changing the Custom Class of the Table View Controller

The name of the scene in the outline pane on the left should change to “Checklist
View Controller Scene”. You have successfully changed ChecklistViewController
from a regular view controller object into a table view controller.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 15

As its name implies, and as you can see in the storyboard, the view controller
contains a Table View object. We’ll go into the difference between controllers and
views soon, but for now remember that the controller is the whole screen while the
table view is the object that actually draws the list.

If there is no big arrow pointing towards your new table view controller, then go to
the Attributes inspector and check Is Initial View Controller.

The arrow points at the initial view controller

The initial view controller is the first screen that your users will see. Without it, iOS
won’t know which view controller to load from your storyboard when the app starts
up and you’ll end up staring at a black screen.

➤ Run the app on the Simulator.

You should see an empty list. This is the table view. You can drag the list up and
down but it doesn’t contain any data yet.

The app now uses a table view controller

By the way, it doesn’t really matter which Simulator you use. Table views resize
themselves to the dimensions of the device, and the app will work equally well on
the small iPhone SE and the huge iPhone 7 Plus.

Personally, I’m using the iPhone SE Simulator because that one still fits on my Mac’s
screen, if only barely! (Remember, you can use ⌘1, ⌘2, and ⌘3 to zoom the
Simulator window.)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 16

Note: When you build the app, Xcode gives the warning “Prototype cells must
have reuse identifiers”. Don’t worry about this for now, we’ll fix it soon.

The anatomy of a table view
First, let’s talk a bit more about table views. A UITableView object displays a list of
things.

Note: I’m not sure why it’s named a table, because a table is commonly
thought of as a spreadsheet-type object that has multiple rows and multiple
columns, whereas the UITableView only has rows. It’s more of a list than a
table, but I guess we’re stuck with the name now. UIKit also provides a
UICollectionView object that works similar to a UITableView but allows for
multiple columns.

There are two styles of tables: “plain” and “grouped”. They work mostly the same
but there are a few small differences. The most visible dissimilarity is that rows in
the grouped style table are placed into boxes (the groups) on a light gray
background.

A plain-style table (left) and a grouped table (right)

The plain style is used for rows that all represent something similar, such as
contacts in an address book where each row contains the name of one person.

The grouped style is used when each row represents something different, such as
the various attributes of one of those contacts. The grouped style table would have
a name row, an address row, a phone number row, and so on.

You will use both table styles in the Checklists app.

The data for a table comes in the form of rows. In the first version of Checklists,
each row will correspond to a to-do item that you can check off when you’re done
with it.

You can potentially have many rows (tens of thousands) although that kind of

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 17

design isn’t recommended. Most users will find it incredibly annoying to scroll
through ten thousand rows to find the one they want, and who can blame them…

Tables display their data in cells. A cell is related to a row but it’s not exactly the
same. A cell is a view that shows a row of data that happens to be visible at that
moment. If your table can show 10 rows at a time on the screen, then it only has
10 cells, even though there may be hundreds of rows with actual data.

Whenever a row scrolls off the screen and becomes invisible, its cell will be re-used
for a new row that scrolls into the screen.

Cells display the contents of rows

In the past you had to put in quite a bit of effort to create cells for your tables but
these days Xcode has a very handy feature named prototype cells that lets you
design your cells visually in Interface Builder.

➤ Open the storyboard and click the empty cell to select it.

Selecting the prototype cell

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 18

Sometimes it can be hard to see exactly what is selected, so keep an eye on the
outline pane to make sure you’ve picked the right thing.

➤ Drag a Label from the Object Library into this cell. Make sure the label spans the
entire width of the cell (but leave a small margin on the sides).

Adding the label to the prototype cell

Besides the label you will also add a checkmark to the cell’s design. The checkmark
is provided by something called the accessory, a built-in view that appears on the
right side of the cell. You can choose from a few standard accessory controls or
provide your own.

➤ Select the Table View Cell again. Inside the Attributes inspector set the
Accessory field to Checkmark:

Changing the accessory to get a checkmark

(If you don’t see this option, then make sure you selected the Table View Cell, not
the Content View or Label below it.)

Your design now looks like this:

The design of the prototype cell: a label and a checkmark

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 19

You may want to resize the label a bit so that it doesn’t overlap the checkmark.

You also need to set a reuse identifier on the cell. This is an internal name that
the table view uses to find free cells to reuse when rows scroll off the screen and
new rows must become visible.

The table needs to assign cells to those new rows, and recycling existing cells is
more efficient than creating new cells. This technique is what makes table views
scroll smoothly.

Reuse identifiers are also important for when you want to display different types of
cells in the same table. For example, one type of cell could have an image and a
label and another could have a label and a button. You would give each cell type its
own identifier, so the table view can assign the right cell to the right row.

Checklists has only one type of cell but you still need to give it an identifier.

➤ Type ChecklistItem into the Table View Cell’s Identifier field (you can find this
in the Attributes inspector).

Giving the table view cell a reuse identifier

➤ Run the app and you’ll see… exactly the same as before. The table is still empty.

You only added a cell design to the table, not actual rows. Remember that the cell
is just the visual representation of the row, not the actual data. To add data to the
table, you have to write some code.

The data source
➤ Head on over to ChecklistViewController.swift and add the following methods
just before the closing bracket at the bottom of the file:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 1
}

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 20

 return cell
}

These methods look a bit more complicated than the ones you’ve seen in Bull’s Eye,
but that’s because each takes two parameters and returns a value to the caller.
Other than that, they work in the same fashion as the methods you’ve dealt with
before.

These two particular methods are part of UITableView’s data source protocol.

The data source is the link between your data and the table view. Usually the view
controller plays the role of data source and therefore implements these methods.

The table view needs to know how many rows of data it has and how it should
display each of those rows. But you can’t simply dump that data into the table
view’s lap and be done with it. You don’t say: “Dear table view, here are my 100
rows, now go show them on the screen.”

Instead, you say to the table view: “This view controller is now your data source.
You can ask it questions about the data anytime you feel like it.”

Once it is hooked up to a data source – i.e. your view controller – the table view
sends a “numberOfRowsInSection” message to find out how many rows there are.

And when the table view needs to draw a particular row on the screen it sends the
“cellForRowAt” message to ask the data source for a cell.

You see this pattern all the time in iOS: one object does something on behalf of
another object. In this case, the ChecklistViewController works to provide the data
to the table view, but only when the table view asks for it.

The dating ritual of a data source and a table view

Your implementation of tableView(numberOfRowsInSection) – the first method that

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 21

you added – returns the value 1. This tells the table view that you just have one
row of data.

The return statement is very important in Swift. It allows a method to send data
back to its caller. In the case of tableView(numberOfRowsInSection), the caller is the
UITableView object and it wants to know how many rows are in the table.

The statements inside a method usually perform some kind of computation using
instance variables and any data received through the method’s parameters. When
the method is done, return says, “Hey, I’m done. Here is the answer I came up
with.” The return value is often called the result of the method.

For tableView(numberOfRowsInSection) the answer is really simple: there is only one
row, so return 1.

Now that the table view knows it has one row to display, it calls the second method
you added – tableView(cellForRowAt) – to obtain a cell for that row. This method
grabs a copy of the prototype cell and gives that back to the table view, again with
a return statement.

Inside tableView(cellForRowAt) is also where you would normally put the row data
into the cell, but the app doesn’t have any row data yet.

➤ Run the app and you’ll see there is a single cell in the table:

The table now has one row

Notice how the iPhone’s status bar partially overlaps the table view. The status bar
does not have its own separate area but is simply drawn on top of everything. Later
in this tutorial you will fix this small cosmetic problem by placing a navigation bar
on top of the table view.

Exercise: Modify the app so now it shows five rows.

That shouldn’t have been too hard:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 5
}

If you were tempted to go into the storyboard and duplicate the prototype cell five

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 22

times, then you were confusing cells with rows.

When you make tableView(numberOfRowsInSection) return the number 5, you tell
the table view that there will be five rows.

The table view then sends the “cellForRowAt” message five times, once for each
row. Because tableView(cellForRowAt) currently just returns a copy of the
prototype cell, your table view shows five identical rows:

The table now has five identical rows

There are several ways to create cells in tableView(cellForRowAt), but by far the
easiest approach is what you’ve done here:

1. add a prototype cell to the table view in the storyboard;

2. set a reuse identifier on the prototype cell;

3. call tableView.dequeueReusableCell(withIdentifier). This makes a new copy of
the prototype cell if necessary or recycles an existing cell that is no longer in
use.

Once you have a cell, you should fill it up with the data from the corresponding row
and give it back to the table view. That’s what you’ll do in the next section.

Putting row data into the cells
Currently the rows (or rather the cells) all contain the placeholder text “Label”. Let’s
give each row a different text.

➤ Open the storyboard and select the Label inside the table view cell. Go to the
Attributes inspector and set the Tag field to 1000.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 23

Set the label’s tag to 1000

A tag is a numeric identifier that you can give to a user interface control in order to
easily look it up later. Why the number 1000? No particular reason. It should be
something other than 0, as that is the default value for all tags. 1000 is as good a
number as any.

Double-check to make sure you set the tag on the Label, not on the Table View Cell
or its Content View. It’s a common mistake to set the tag on the wrong view and
then the results won’t be what you expect!

➤ In ChecklistViewController.swift, change tableView(cellForRowAt) to the
following:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)

 let label = cell.viewWithTag(1000) as! UILabel

 if indexPath.row == 0 {
 label.text = "Walk the dog"
 } else if indexPath.row == 1 {
 label.text = "Brush my teeth"
 } else if indexPath.row == 2 {
 label.text = "Learn iOS development"
 } else if indexPath.row == 3 {
 label.text = "Soccer practice"
 } else if indexPath.row == 4 {
 label.text = "Eat ice cream"
 }

 return cell
}

You’ve already seen the first line. This gets a copy of the prototype cell – either a
new one or a recycled one – and puts it into the local constant named cell:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 24

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)

(Recall that this is a constant because it’s defined with let, not var. It is local
because it’s defined inside a method.)

But what is this indexPath thing?

IndexPath is simply an object that points to a specific row in the table. When the
table view asks the data source for a cell, you can look at the row number inside
the indexPath.row property to find out for which row this cell is intended.

Note: It is also possible for tables to group rows into sections. In an address
book app you might sort contacts by last name. All contacts whose last name
starts with “A” are grouped into their own section, all contacts whose last
name starts with “B” are in another section, and so on.

To find out which section a row belongs to you’d look at the indexPath.section
property. The Checklists app has no need for this kind of grouping, so you’ll
ignore the section property of IndexPath for now.

The first new line that you’ve just added is:

 let label = cell.viewWithTag(1000) as! UILabel

Here you ask the table view cell for the view with tag 1000. That is the tag you just
set on the label in the storyboard, so this returns a reference to the corresponding
UILabel object.

Using tags is a handy trick to get a reference to a UI element without having to
make an @IBOutlet variable for it.

Exercise: Why can’t you simply add an @IBOutlet variable to the view controller
and connect the cell’s label to that outlet in the storyboard? After all, that’s how you
created references to the labels in Bull’s Eye… so why won’t that work here?

Answer: There will be more than one cell in the table and each cell will have its own
label. If you connected the label from the prototype cell to an outlet on the view
controller, that outlet could only refer to the label from one of these cells, not all of
them. Since the label belongs to the cell and not to the view controller as a whole,
you can’t make an outlet for it on the view controller. Confused? Don’t worry about
if for now.

Back to the code. The next bit shouldn’t give you too much trouble:

 if indexPath.row == 0 {
 label.text = "Walk the dog"
 } else if indexPath.row == 1 {
 label.text = "Brush my teeth"

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 25

 } else if indexPath.row == 2 {
 label.text = "Learn iOS development"
 } else if indexPath.row == 3 {
 label.text = "Soccer practice"
 } else if indexPath.row == 4 {
 label.text = "Eat ice cream"
 }

You have seen this if - else if - else structure before. It simply looks at the
value of indexPath.row, which contains the row number, and changes the label’s
text accordingly. The cell for the first row gets the text “Walk the dog”, the cell for
the second row gets the text “Brush my teeth”, and so on.

Note: Computers start counting at 0. If you have a list of 4 items, they are
counted as 0, 1, 2 and 3. It may seem a little silly at first, but that’s just the
way programmers do things.

For the first row in the first section, indexPath.row is 0. The second row has
row number 1, the third row is row 2, and so on.

Counting from 0 may take some getting used to, but after a while it becomes
natural and you’ll start counting at 0 even when you’re out for groceries.

➤ Run the app and see that it has five rows, each with its own text:

The rows in the table now have their own text

That is how you write the tableView(cellForRowAt) method to provide data to the
table. You first get a UITableViewCell object and then change the contents of that
cell based on the row number from indexPath.

Just for the fun of it, let’s put 100 rows into the table.

➤ Change the code to the following:

 if indexPath.row % 5 == 0 {
 label.text = "Walk the dog"
 } else if indexPath.row % 5 == 1 {
 label.text = "Brush my teeth"

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 26

 } else if indexPath.row % 5 == 2 {
 label.text = "Learn iOS development"
 } else if indexPath.row % 5 == 3 {
 label.text = "Soccer practice"
 } else if indexPath.row % 5 == 4 {
 label.text = "Eat ice cream"
 }

This uses the remainder operator, represented by the % sign, to determine what
row you’re on. (This is also known as the modulo operator.)

The % operator returns the remainder of a division. You may remember this from
doing math in school. For example 13 % 4 = 1, because four goes into thirteen 3
times with a remainder of 1. However, 12 % 4 is 0 because there is no remainder.

The first row, as well as the sixth, eleventh, sixteenth and so on, will show the text
“Walk the dog”. The second, seventh and twelfth row will show “Brush my teeth”.
The third, eight and thirteenth row will show “Learn iOS development”. And so on…

I think you get the picture: every five rows these lines repeat. Rather than typing in
all the possibilities all the way up to a hundred, you let the computer calculate this
for you (that is what they are good at):

First row: 0 % 5 = 0
Second row: 1 % 5 = 1
Third row: 2 % 5 = 2
Fourth row: 3 % 5 = 3
Fifth row: 4 % 5 = 4

Sixth row: 5 % 5 = 0 (same as first row) *** The sequence
Seventh row: 6 % 5 = 1 (same as second row) repeats here
Eighth row: 7 % 5 = 2 (same as third row)
Ninth row: 8 % 5 = 3 (same as fourth row)
Tenth row: 9 % 5 = 4 (same as fifth row)

Eleventh row: 10 % 5 = 0 (same as first row) *** The sequence
Twelfth row: 11 % 5 = 1 (same as second row) repeats again
and so on...

If this makes no sense to you at all, then feel free to ignore it. You’re just using this
trick to quickly get a large table filled up.

➤ Also make tableView(numberOfRowsInSection) return 100.

➤ Run the app and you should see this:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 27

The table now has 100 rows

Note: To scroll through this table view on the Simulator, you have to pretend
you’re using an actual iPhone. Click the mouse to “grab” the table view and
then drag up or down. Simply swiping without clicking first – the way you’d
normally scroll things on the Mac – doesn’t work.

Exercise: How many cells do you think this table view uses?

Answer: There are 100 rows but only about 14 fit on the screen at a time. If you
count the number of visible rows in the screenshot above you’ll get up to 13, but
it’s possible to scroll the table in such a way that the top cell is still visible while a
new cell is pulled in from below. So that makes at least 14 cells (a few more on the
larger iPhone 6s and 7).

If you scroll really fast, then I guess it is possible that the table view needs to make
a few more temporary cells, but I’m not sure about that. Is this important to know?
Not really. You should let the table view take care of juggling the cells behind the
scenes. All you have to do is give the table view a cell when it asks for it and fill it
up with the data from the corresponding row.

You’ll usually have fewer cells than rows. If the app always made a cell for each
row, iOS would run out of memory really fast, especially on large tables. Because
not all rows can be visible at once, that would be very wasteful and slow. iOS is a
good citizen and recycles cells whenever it can.

Now you know why UITableView makes the distinction between rows – the data, of
which you’ll usually have lots – and cells – the visible representation of that data on
the screen, of which there are only about a dozen.

As the song goes, “Rows and cells, rows and cells, tables all the way. Oh! What fun
it is to learn about new things every day.”

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 28

Strange crashes?
A common question on the iOS Apprentice forums is, “I’m just following along with
the tutorial and suddenly my app crashes… What went wrong?”

If that happens to you, then make sure you haven’t set a breakpoint on your code
by accident. A breakpoint is a debugging tool that stops your program at a specific
line and jumps into the Xcode debugger. It may appear like a crash, but your
program simply paused.

A breakpoint looks like a blue arrow in the left-hand margin:

The blue arrow sets a breakpoint

If your app crashes and the line at which the error occurred – or the one right
before it – has a blue arrow, then you simply hit a breakpoint. Sometimes people
click in the margin by mistake and set a breakpoint without realizing it (I’ve
certainly done that!).

To remove the breakpoint, drag it out of the Xcode window.

By the way, the forums for this book are at forums.raywenderlich.com, so drop by if
you have any questions.

Tapping on the rows
When you tap a row, the cell colors gray to indicate it is selected. But when you let
go, the cell stays selected. You are going to change this so that tapping the row will
toggle the checkmark on and off.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 29

A tapped row stays gray

Taps on rows are handled by the table view’s delegate. Remember I said before
that in iOS you often find objects doing something on behalf of other objects? The
data source is one example of this, but the table view also depends on another little
helper, the table view delegate.

The concept of delegation is very common in iOS. An object will often rely on
another object to help it out with certain tasks. This separation of concerns keeps
the system simple, as each object does only what it is good at and lets other
objects take care of the rest. The table view offers a great example of this.

Because every app has its own requirements for what its data looks like, the table
view must be able to deal with lots of different types of data. Instead of making the
table view very complex, or requiring that you modify it to suit your own apps, the
UIKit designers have chosen to delegate the duty of filling up the cells to another
object, the data source.

The table view doesn’t really care who its data source is or what kind of data your
app deals with, just that it can send the cellForRowAt message and receive a cell in
return. This keeps the table view component simple and moves the responsibility
for handling the data to where it belongs: in your code.

Likewise, the table view knows how to recognize when the user taps a row, but
what it should do in response completely depends on the app. In this app you’ll
make it toggle the checkmark; another app will likely do something totally different.

Using the delegation system, the table view can simply send a message that a tap
occurred and let the delegate sort it out.

Usually components will have just one delegate but the table view splits up its
delegate duties into two separate helpers: the UITableViewDataSource for putting
rows into the table, and the UITableViewDelegate for handling taps on the rows and
several other tasks.

➤ To see this, open the storyboard and Ctrl-click on the table view to bring up its
connections:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 30

The table’s data source and delegate are hooked up to the view controller

You can see that the table view’s data source and delegate are both connected to
the view controller. That is standard practice for a UITableViewController. (You can
also use table views in a basic UIViewController but then you’ll have to connect the
data source and delegate manually.)

➤ Add the following method to ChecklistViewController.swift:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 tableView.deselectRow(at: indexPath, animated: true)
}

The tableView(didSelectRowAt) method is one of the table view delegate methods
and gets called whenever the user taps on a cell. Run the app and tap a row – the
cell briefly turns gray and then becomes de-selected again.

➤ Let’s make tableView(didSelectRowAt) toggle the checkmark, so change it to the
following:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 if cell.accessoryType == .none {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 }

 tableView.deselectRow(at: indexPath, animated: true)
}

The checkmark is part of the cell (the accessory, remember?), so you first need to
find the UITableViewCell object for the tapped row. You simply ask the table view:
what is the cell at this indexPath you’ve given me?

Because it is theoretically possible that there is no cell at the specified index-path,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 31

for example if that row isn’t visible, you need to use the special if let statement.

The if let tells Swift that you only want to perform the rest of the code if there
really is a UITableViewCell object. In this app there always will be one – after all,
that’s what the user just tapped – but Swift doesn’t know that.

Once you have the UITableViewCell object, you look at the cell’s accessory, which
you can find with the accessoryType property. If it is “none”, then you change the
accessory to a checkmark; if it was a checkmark, you change it back to none.

Note: To find the cell you call tableView.cellForRow(at).

It’s important to realize this is not the same method as the data source
method tableView(cellForRowAt) that you added earlier.

Despite the similar names they are different methods in different objects,
performing different tasks. Tricky, eh?

The purpose of your data source method is to deliver a new (or recycled) cell
object to the table view when a row becomes visible. You never call this
method yourself; only the UITableView may call its data source methods.

The purpose of tableView.cellForRow(at) is also to return a cell object, but
this is an existing cell for a row that is currently being displayed. It won’t
create any new cells. If there is no cell for that row yet, it will return the
special value nil, meaning that no cell could be found. (You use the if let
statement to “catch” such nil values.)

Remember how I said methods should have clear, descriptive names? UIKit is
pretty good with its names but this is a case where a very similar name used
in two different places can lead to confusion and despair. Beware this pitfall!

➤ Run the app and try it out. You should be able to toggle the checkmarks on the
rows. Sweet!

You can now tap on a row to toggle the checkmark

Note: If the checkmark does not appear or disappear right away but only after
you select another row, then make sure the method name is not

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 32

tableview(didDeselectRowAt)! You want didSelect, not didDeselect. Xcode’s
autocompletion may have fooled you into picking the wrong method name.

Unfortunately, the app has a bug. Here’s how to reproduce it:

➤ Tap a row to remove the checkmark. Scroll that row off the screen and scroll
back again (try scrolling really fast). The checkmark has reappeared!

In addition, the checkmark seems to spontaneously disappear from other rows.
What is going on here?

Again it’s the story of cells vs. rows: you have toggled the checkmark on the cell
but the cell may be reused for another row when you’re scrolling. Whether a
checkmark is set or not should be a property of the row, not the cell.

Instead of using the cell’s accessory to remember to show a checkmark or not, you
need some way to keep track of the checked status for each row. That means it’s
time to expand the data source and make it use a proper data model, which is the
topic of the next section.

Methods with multiple parameters
Most of the methods you have used in the Bull’s Eye tutorial took only one
parameter or did not have any parameters at all, but these new table view data
source and delegate methods take two:

override func tableView(
 _ tableView: UITableView, // parameter 1
 numberOfRowsInSection section: Int) // parameter 2
 -> Int { // return value
 . . .
}
override func tableView(
 _ tableView: UITableView, // parameter 1
 cellForRowAt indexPath: IndexPath) // parameter 2
 -> UITableViewCell { // return value
 . . .
}
override func tableView(
 _ tableView: UITableView, // parameter 1
 didSelectRowAt indexPath: IndexPath) { // parameter 2
 . . .
}

The first parameter is the UITableView object on whose behalf these methods are
invoked. This is done for convenience, so you won’t have to make an @IBOutlet in

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 33

order to send messages back to the table view.

For numberOfRowsInSection the second parameter is the section number. For
cellForRowAt and didSelectRowAt it is the index-path.

Methods are not limited to just two parameters, they can have many. But for
practical reasons two or three is usually more than enough, and you won’t see
many methods with more than five parameters.

In other programming languages a method typically looks like this:

Int numberOfRowsInSection(UITableView tableView, Int section) {
 . . .
}

In Swift we do it a little bit differently, mostly to be compatible with the iOS
frameworks, which are all written in the Objective-C programming language.

Let’s take a look again at “numberOfRowsInSection”:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 . . .
}

The full name of this method is officially tableView(numberOfRowsInSection). If you
pronounce that out loud, it actually makes sense. It asks for the number of rows in
a particular section of a particular table view.

The first parameter looks like this:

 _ tableView: UITableView

The name of this parameter is “tableView”. The name is followed by a colon and the
parameter’s type, UITableView. I’ll tell you what the underscore _ is for in a second.

The second parameter looks like this:

 numberOfRowsInSection section: Int

This one has two names, “numberOfRowsInSection” and “section”.

The first name, numberOfRowsInSection, is used when calling the method. This is
known as the external parameter name. Inside the method itself you use the
second name, section, known as the local parameter name. The data type of this
parameter is Int.

The _ underscore is used when you don’t want a parameter to have an external
name. You’ll often see the _ on the first parameter of methods that come from
Objective-C frameworks. With such methods the first parameter only has one name
but the other parameters have two. Strange? Yes.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 34

It makes sense if you’ve ever programmed in Objective-C but no doubt it looks
weird if you’re coming from another language. Once you get used to it you’ll find
that this notation is actually quite readable.

Sometimes people with experience in other languages get confused because they
think that ChecklistViewController.swift contains three functions that are all named
tableView(). But that’s not how it works in Swift: the names of the parameters are
part of the full method name. That’s why these three methods are actually named:

 tableView(numberOfRowsInSection)
 tableView(cellForRowAt)
 tableView(didSelectRowAt)

Some developers also include the underscore and colons when referring to these
methods, but we’re not doing that in this book because it’s harder to read:

 tableView(_:numberOfRowsInSection:)
 tableView(_:cellForRowAt:)
 tableView(_:didSelectRowAt:)

By the way, the return type of the method is at the end, after the -> arrow. If there
is no arrow, as in tableView(didSelectRowAt), then the method is not supposed to
return a value.

Phew! That was a lot of new stuff to take in, so I hope you’re still with me. If not,
then take a break and start at the beginning again. You’re being introduced to a
whole bunch of new concepts all at once and that can be overwhelming.

But don’t fear, it’s OK if not everything makes perfect sense yet. As long as you get
the gist of what’s going on, you’re good to continue.

If you want to check your work, you can find the project files for the app up to this
point under 01 - Table View in the tutorial’s Source Code folder.

Model-View-Controller
No tutorial on programming for iOS can escape an explanation of Model-View-
Controller, or MVC for short.

MVC is one of the three fundamental design patterns of iOS. You’ve already seen
the other two: delegation, making one object do something on behalf of another;
and target-action, connecting events such as button taps to action methods.

Model-View-Controller means that the objects in your app can be split up into three

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 35

groups:

• Model objects. These objects contain your data and any operations on the data.
For example, if you were writing a cookbook app, the model would consist of the
recipes. In a game it would be the design of the levels, the score of the player,
and the positions of the monsters.

The operations that the data model objects perform are sometimes called the
business rules or the domain logic. For the app from this tutorial, the checklists
and their to-do items form the data model.

• View objects. These objects make up the visual part of the app: images,
buttons, labels, text fields, table view cells, and so on. In a game the views form
the visual representation of the game world, such as the monster animations and
a frag counter.

A view can draw itself and responds to user input, but it typically does not handle
any application logic. Many views, such as UITableView, can be re-used in many
different apps because they are not tied to a specific data model.

• Controller objects. The controller is the object that connects your data model
objects to the views. It listens to taps on the views, makes the data model
objects do some calculations in response, and updates the views to reflect the
new state of your model. The controller is in charge. On iOS, the controller is
called the “view controller”.

Conceptually, this is how these three building blocks fit together:

How Model-View-Controller works

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 36

The view controller has one main view, accessible through its view property, that
contains a bunch of subviews. It is not uncommon for a screen to have dozens of
views all at once. The top-level view usually fills the whole screen. You design the
layout of the view controller’s screen in the storyboard.

In the Checklists app, the main view is the UITableView and its subviews are the
table view cells. Each cell also has several subviews of its own, namely the text
label and the accessory.

A view controller handles one screen of the app. If your app has more than one
screen, each of these is handled by its own view controller and has its own views.
Your app flows from one view controller to the other.

You will often need to create your own view controllers but iOS also comes with
ready-to-use view controllers, such as the image picker controller for photos, the
mail compose controller that lets you write email, and the tweet sheet for sending
Twitter messages.

Views vs. view controllers

Remember that a view and a view controller are two different things.

A view is an object that draws something on the screen, such as a button or a
label. The view is what you see.

The view controller is what does the work behind the scenes. It is the bridge
that sits between your data model and the views.

A lot of beginners give their view controllers names such as FirstView or
MainView. That is very confusing! If something is a view controller, its name
should end with “ViewController”, not “View”.

I sometimes wish Apple had left the word “view” out of “view controller” and
just called it “controller” as that is a lot less misleading.

Creating the data model
So far you’ve put a bunch of fake data into the table view. The data consists of a
text string and a checkmark that can be on or off.

As you saw, you cannot use the cells to remember the data as cells get re-used all
the time and their old contents get overwritten.

Table view cells are part of the view. Their purpose is to display the app’s data, but
that data actually comes from somewhere else: the data model.

Remember this well: the rows are the data, the cells are the views. The table view
controller is the thing that ties them together through the act of implementing the
table view’s data source and delegate methods.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 37

The table view controller (data source) gets the data from the model and puts it into the
cells

The data model for this app consists of a list of to-do items. Each of these items will
get its own row in the table.

For each to-do item you need to store two pieces of information: the text (“Walk
the dog”, “Brush my teeth”, “Eat ice cream”) and whether the checkmark is set or
not.

That is two pieces of information per row, so you need two variables for each row.

First I’ll show you the cumbersome way to program this. It will work but it isn’t very
smart. Even though this is not the best approach, I’d still like you to follow along
and copy-paste the code into Xcode and run the app.

You need to understand why this approach is problematic so you’ll be able to
appreciate the proper solution better.

➤ In ChecklistViewController.swift, add the following instance variables right
after the class ChecklistViewController line:

class ChecklistViewController: UITableViewController {
 var row0text = "Walk the dog"
 var row1text = "Brush teeth"
 var row2text = "Learn iOS development"
 var row3text = "Soccer practice"
 var row4text = "Eat ice cream"
 . . .

These variables are defined outside of any method (they are not “local”), so they
can be used by all of the methods from ChecklistViewController.

➤ Change the data source methods into:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 38

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 5
}

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)
 let label = cell.viewWithTag(1000) as! UILabel

 if indexPath.row == 0 {
 label.text = row0text
 } else if indexPath.row == 1 {
 label.text = row1text
 } else if indexPath.row == 2 {
 label.text = row2text
 } else if indexPath.row == 3 {
 label.text = row3text
 } else if indexPath.row == 4 {
 label.text = row4text
 }
 return cell
}

➤ Run the app. It still shows the same five rows as before.

What have you done here? For every row you have added an instance variable with
the text for that row. Together, those five instance variables are your data model.

In tableView(cellForRowAt) you look at indexPath.row to figure out which row
you’re supposed to draw, and put the text from the corresponding instance variable
into the cell.

Let’s fix the checkmark toggling logic. You no longer want to toggle the checkmark
on the cell but on the row. To do this, you add another five new instance variables
to keep track of the “checked” state of each of the rows. These new variables also
belong to your data model.

➤ Add the following instance variables:

var row0checked = false
var row1checked = false
var row2checked = false
var row3checked = false
var row4checked = false

These variables have the data type Bool. You’ve seen the data types Int (whole
numbers), Float (numbers with decimals), and String (text) before. A Bool variable
can hold only two possible values: true and false.

Bool is short for “boolean”, after Englishman George Boole who long ago invented a
kind of logic that forms the basis of all modern computing. The fact that computers
talk in ones and zeros is largely due to him.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 39

You use Bool variables to remember whether something is true (1) or not (0). The
names of boolean variables often start with the verb “is” or “has”, as in isHungry or
hasIceCream.

The instance variable row0checked is true if the first row has its checkmark set and
false if it hasn’t. Likewise, row1checked reflects whether the second row has a
checkmark or not. The same thing goes for the instance variables for the other
rows.

Note: How does the compiler know that the type of these variables is Bool?
You never specified that anywhere.

Swift uses a clever technique called type inference to determine the data type
of a variable if you don’t state it explicitly.

Because you said “var row0checked = false”, Swift assumes that you intended
to make this a Bool, as false is valid only for Bool values.

The delegate method that handles the taps on the rows will now use these new
instance variables to determine whether the checkmark for a row needs to be
toggled on or off.

The code in tableView(didSelectRowAt) should be something like the following.
Don’t make these changes just yet! Just try to understand what happens.

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 if indexPath.row == 0 {
 row0checked = !row0checked
 if row0checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 } else if indexPath.row == 1 {
 row1checked = !row1checked
 if row1checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 } else if indexPath.row == 2 {
 row2checked = !row2checked
 if row2checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 } else if indexPath.row == 3 {
 row3checked = !row3checked
 if row2checked {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 40

 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 } else if indexPath.row == 4 {
 row4checked = !row4checked
 if row4checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 }
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

It should be clear that the code looks at indexPath.row to find the row that was
tapped, and then performs some logic with the corresponding “row checked”
instance variable. But there’s also some new stuff you may not have seen before.

Let’s look at the first if indexPath.row statement in detail:

 if indexPath.row == 0 {
 row0checked = !row0checked
 if row0checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 } . . .

If indexPath.row is 0, the user tapped on the very first row and the corresponding
instance variable is row0checked.

You do the following to flip that boolean value around:

 row0checked = !row0checked

The ! symbol is the logical not operator. There are a few other logical operators
that work on Bool values, such as and and or, which you’ll encounter soon enough.

What ! does is simple: it reverses the meaning of the value. If row0checked is true,
then ! makes it false. Conversely, !false is true.

Think of ! as “not”: not yes is no and not no is yes. Yes?

Once you have the new value of row0checked, you can use it to show or hide the
checkmark:

 if row0checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 41

The same logic is used for the other four rows.

In fact, the other rows use the exact same logic. The only thing that is different
between each of these code blocks is the name of the “row checked” instance
variable.

Because the code looks so familiar from one if-statement to the next, we can write
this in a better way.

➤ Replace tableView(didSelectRowAt) with the following:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 var isChecked = false

 if indexPath.row == 0 {
 row0checked = !row0checked
 isChecked = row0checked
 } else if indexPath.row == 1 {
 row1checked = !row1checked
 isChecked = row1checked
 } else if indexPath.row == 2 {
 row2checked = !row2checked
 isChecked = row2checked
 } else if indexPath.row == 3 {
 row3checked = !row3checked
 isChecked = row3checked
 } else if indexPath.row == 4 {
 row4checked = !row4checked
 isChecked = row4checked
 }

 if isChecked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

That’s a lot shorter!

Notice how the logic that sets the checkmark on the cell has moved to the bottom
of the method. There is now only one place where this happens.

To make this possible, you store the value of the “row checked” instance variable
into the local variable isChecked. This temporary variable is just used to remember
whether the selected row needs a checkmark or not.

By using a local variable you were able to remove a lot of duplicated code, which is
a good thing. You’ve taken the logic that all rows had in common and moved it out
of their if-statements into a single place.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 42

Note: Code duplication makes programs a lot harder to read. Worse, it invites
subtle mistakes that cause hard-to-find bugs. Always be on the lookout for
opportunities to remove duplicate logic!

Exercise: There was actually a bug in the previous, longer version of this
method – did you spot it? That’s what happens when you use copy-paste to
create duplicate code, like I did when I wrote that method.

➤ Run the app and observe… that it still doesn’t work very well. You have to tap a
few times on a row to actually make the checkmark go away.

What’s wrong here? Simple: when you declared the rowXchecked variables you set
their values to false.

So row0checked and the others think that there is no checkmark on their row, but
the table draws one anyway. That’s because you enabled the checkmark accessory
on the prototype cell.

In other words: the data model (the “row checked” variables) and the views (the
checkmarks inside the cells) are out-of-sync.

There are a few ways you could try to fix this: you could set the Bool variables to
true to begin with, or you could remove the checkmark from the prototype cell in
the storyboard.

Neither is a foolproof solution. What goes wrong here isn’t so much that you
initialized the “row checked” values wrong or designed the prototype cell wrong, but
that you didn’t set the cell’s accessoryType property to the right value in
tableView(cellForRowAt).

When you are asked for a new cell, you always should configure all of its properties.
The call to tableView.dequeueReusableCell(withIdentifier) could return a cell that
was previously used for a row with a checkmark. If the new row shouldn’t have a
checkmark, then you have to remove it from the cell at this point (and vice versa).

Let’s fix that.

➤ Add the following method to ChecklistViewController.swift:

func configureCheckmark(for cell: UITableViewCell,
 at indexPath: IndexPath) {
 var isChecked = false

 if indexPath.row == 0 {
 isChecked = row0checked
 } else if indexPath.row == 1 {
 isChecked = row1checked
 } else if indexPath.row == 2 {
 isChecked = row2checked
 } else if indexPath.row == 3 {
 isChecked = row3checked

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 43

 } else if indexPath.row == 4 {
 isChecked = row4checked
 }

 if isChecked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
}

This new method looks at the cell for a certain row, specified as usual by indexPath,
and makes the checkmark visible if the corresponding “row checked” variable is
true, or hides the checkmark if the variable is false.

This logic should look very familiar! The only difference with before is that here you
don’t toggle the state of the “row checked” variable. You only read it and then set
the cell’s accessory.

You’ll call this method from tableView(cellForRowAt), just before you return the
cell.

➤ Change that method to the following (recall that . . . means that the existing
code at that spot doesn’t change):

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 . . .

 configureCheckmark(for: cell, at: indexPath)
 return cell
}

➤ Run the app again.

Now the app works just fine. Initially all the rows are unchecked. Tapping a row
checks it, tapping it again unchecks it. The rows and cells are now always in sync.
This code guarantees that each cell always has the value that corresponds to its
row.

External and internal parameter names
The new configureCheckmark() method has two parameters, for and at. Its full
name is therefore configureCheckmark(for:at:).

for and at are the so-called external names of these parameters.

Adding short prepositions such as “at”, “with”, or “for” is very common in Swift. It

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 44

makes the name of the method sound like a proper English phrase: “configure
checkmark for this cell at that index-path”. Doesn’t it just roll off your tongue?

When you call the method, you always have to include those external parameter
names:

configureCheckmark(for: someCell, at: someIndexPath)

Here, someCell is a variable that refers to a UITableViewCell object, and likewise,
someIndexPath is a variable of type IndexPath.

You can’t write the following:

configureCheckmark(someCell, someIndexPath)

This won’t compile. The app doesn’t have a configureCheckmark() method, only
configureCheckmark(for:at:). The for and at are an integral part of the method
name!

Inside the method you use the internal labels cell and indexPath to refer to the
parameters.

func configureCheckmark(for cell: UITableViewCell,
 at indexPath: IndexPath) {
 if indexPath.row == 0 {
 . . .
 }

 cell.accessoryType = .checkmark
 . . .
}

You can’t write if at.row == 0 or for.accessoryType = .checkmark. That also
sounds a little odd, doesn’t it?

This split between external and internal labels is unique to Swift and Objective-C
and takes some getting used to if you’re familiar with other languages.

This naming convention primarily exists so that Swift can talk to older Objective-C
code, which is a good thing as most of the iOS frameworks are still written in that
language.

Why did you make configureCheckmark(for:at:) a method of its own anyway? Well,
you can use it to simplify tableView(didSelectRowAt).

Notice how similar these two methods currently are. That’s another case of code

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 45

duplication that you can get rid of!

You can simplify “didSelectRowAt” by letting configureCheckmark(for:at:) do some
of the work.

➤ Replace tableView(didSelectRowAt) with the following:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 if indexPath.row == 0 {
 row0checked = !row0checked
 } else if indexPath.row == 1 {
 row1checked = !row1checked
 } else if indexPath.row == 2 {
 row2checked = !row2checked
 } else if indexPath.row == 3 {
 row3checked = !row3checked
 } else if indexPath.row == 4 {
 row4checked = !row4checked
 }

 configureCheckmark(for: cell, at: indexPath)
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

This method no longer sets or clears the checkmark from the cell, but only toggles
the “checked” state in the data model and then calls configureCheckmark(for:at:)
to update the view.

➤ Run the app again and it should still work.

➤ Change the declarations of the instance variables to the following and run the
app again:

var row0checked = false
var row1checked = true
var row2checked = true
var row3checked = false
var row4checked = true

Now rows 1, 2 and 4 (the second, third and fifth rows) initially have a checkmark
while the others don’t.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 46

The data model and the table view cells are now always in-sync

The approach that we’ve taken here to remember which rows are checked or not
works just fine, but you’ll have to agree that checking each index-path by hand
seems like a lot of effort.

For only five rows it’s doable, but what if you have 100 rows and they all need to be
unique? Should you add another 95 “row text” and “row checked” variables to the
view controller, as well as that many additional if-statements? I hope not!

There is a better way: arrays.

Arrays
An array is an ordered list of objects. If you think of a variable as a container of
one value (or one object) then an array is a container for multiple objects.

Arrays are ordered lists containing multiple objects

Of course, the array itself is also an object (named Array) that you can put into a
variable. And because arrays are objects, arrays can contain other arrays.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 47

Arrays can also include other arrays

The objects inside an array are indexed by numbers, starting at 0 as usual. To ask
the array for the first object, you write array[0]. The second object is at array[1],
and so on.

The array is ordered, meaning that the order of the objects it contains matters. The
object at index 0 always comes before the object at index 1.

Note: Array is a so-called collection object. There are several other collection
objects and they all organize their objects in a different fashion. Dictionary,
for example, contains so-called “key-value pairs”, just like a real dictionary
contains a list of words and a description for each of those words. You’ll use
some of these other collection types in the later tutorials.

The organization of an array is very similar to the rows from a table – they are both
lists of objects in a particular order – so it makes sense to put your data model’s
rows into an array.

Arrays store one object per index, but your rows currently consist of two separate
pieces of data: the text and the checked state. It would be easier if you made a
single object for each row, because then the row number from the table simply
becomes the index in the array.

Let’s combine the text and checkmark state into a new object of your own!

➤ Select the Checklists group in the project navigator and right click. Choose New
File… from the popup menu:

Adding a new file to the project

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 48

Under the Source section choose Swift File:

Choosing the Swift File class template

Click Next to continue. Save the new file as ChecklistItem (adding the .swift file
extension is optional):

Saving the new Swift file

Press Create to add the new file to the project:

The new file is added to the project navigator

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 49

➤ Add the following to the new ChecklistItem.swift file, below the import line:

class ChecklistItem {
 var text = ""
 var checked = false
}

What you see here is the absolute minimum amount of stuff you need in order to
make a new object. The class keyword names the object and the two lines with var
add data items (instance variables) to it.

The text property will store the description of the checklist item (the text that will
appear in the table view cell’s label) and the checked property determines whether
the cell gets a checkmark or not.

Note: You may be wondering what the difference is between the terms
property and instance variable – we’ve used both to refer to an object’s data
items. You’ll be glad to hear that these two things mean the same thing.

In Swift terminology, a property is a variable or constant that is used in the
context of an object. That’s exactly what an instance variable is. So you can
use the terms property and instance variable interchangeably.

(In Objective-C, properties and instance variables are closely related but not
quite the same thing. In Swift they are the same.)

That’s all for ChecklistItem.swift for now. The ChecklistItem object currently only
serves to combine the text and the checked variables into one object. Later you’ll
add more to it.

Before you get around to using an array, let’s replace the String and Bool instance
variables in the view controller with these new ChecklistItem objects.

➤ In ChecklistViewController.swift, remove the old instance variables and
replace them with ChecklistItem objects:

class ChecklistViewController: UITableViewController {
 var row0item: ChecklistItem
 var row1item: ChecklistItem
 var row2item: ChecklistItem
 var row3item: ChecklistItem
 var row4item: ChecklistItem

This replaces the row0text, row0checked, etc. instance variables.

Because some methods in the view controller still refer to these old variables,
Xcode detects several errors. Before you can run the app again you need to fix
these errors, so let’s do that now.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 50

Note: I generally encourage you to type in the code from this book by hand
because that gives you a better feel for what you’re doing, but in the following
instances it’s easier to just copy-paste from the PDF.

Unfortunately, copying from the PDF sometimes adds strange or invisible
characters that confuse Xcode. It’s best to first paste into a plain text editor
such as TextWrangler and then copy that into Xcode.

Of course, if you’re reading the print edition of this book, copying & pasting
from the book isn’t going to work, but you can still use copy-paste to save
yourself some effort. Make the changes on one line and then copy them over
to the other lines. Copy-paste is a programmer’s best friend, but don’t forget
to update the lines you pasted to use the correct variable names!

➤ In tableView(cellForRowAt), replace the if-statements with the following:

 if indexPath.row == 0 {
 label.text = row0item.text
 } else if indexPath.row == 1 {
 label.text = row1item.text
 } else if indexPath.row == 2 {
 label.text = row2item.text
 } else if indexPath.row == 3 {
 label.text = row3item.text
 } else if indexPath.row == 4 {
 label.text = row4item.text
 }

➤ In tableView(didSelectRowAt), change the following lines:

 if indexPath.row == 0 {
 row0item.checked = !row0item.checked
 } else if indexPath.row == 1 {
 row1item.checked = !row1item.checked
 } else if indexPath.row == 2 {
 row2item.checked = !row2item.checked
 } else if indexPath.row == 3 {
 row3item.checked = !row3item.checked
 } else if indexPath.row == 4 {
 row4item.checked = !row4item.checked
 }

➤ And finally, in configureCheckmark(for:at:), make these changes:

 if indexPath.row == 0 {
 isChecked = row0item.checked
 } else if indexPath.row == 1 {
 isChecked = row1item.checked
 } else if indexPath.row == 2 {
 isChecked = row2item.checked
 } else if indexPath.row == 3 {
 isChecked = row3item.checked
 } else if indexPath.row == 4 {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 51

 isChecked = row4item.checked
 }

Instead of using the separate row0text and row0checked variables, you now use
row0item.text and row0item.checked. Likewise for the other rows.

That takes care of most of the errors, but not all of them. Xcode complains that
“Class ChecklistViewController has no initializers.” This was not a problem before,
so what has gone wrong?

Previously you gave the “row text” and “row checked” variables a value when you
declared them, like so:

var row0text = "Walk the dog"
var row0checked = false

With the new ChecklistItem object you can’t do that because a ChecklistItem
consists of more than one value.

Instead you used a so-called type annotation to tell Swift that row0Item is an object
of type ChecklistItem:

var row0item: ChecklistItem

But at this point row0item doesn’t have a value yet, it’s just an empty container for
a ChecklistItem object.

And that’s a problem: in Swift programs, all variables should always have a value –
the containers can never be empty.

If you can’t give the variable a value right away when you declare it, then you have
to give it a value inside a so-called initializer method.

➤ Add the following to ChecklistViewController.swift. This is a special type of
method (which is why it doesn’t start with the word func). It is customary to place
it near the top of the file, just below the instance variables.

required init?(coder aDecoder: NSCoder) {
 row0item = ChecklistItem()
 row0item.text = "Walk the dog"
 row0item.checked = false

 row1item = ChecklistItem()
 row1item.text = "Brush my teeth"
 row1item.checked = true

 row2item = ChecklistItem()
 row2item.text = "Learn iOS development"
 row2item.checked = true

 row3item = ChecklistItem()
 row3item.text = "Soccer practice"
 row3item.checked = false

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 52

 row4item = ChecklistItem()
 row4item.text = "Eat ice cream"
 row4item.checked = true

 super.init(coder: aDecoder)
}

Every object in Swift has an init method, or initializer. Some objects even have
more than one.

The init method is called by Swift when the object comes into existence.

For the view controller that happens when it is loaded from the storyboard during
app startup. At that point, its init?(coder) method is called.

That makes init?(coder) a great place for putting values into any variables that
still need them (soon you’ll learn more about what the “coder” parameter is for).

Inside init?(coder), you first create a new ChecklistItem object:

 row0item = ChecklistItem()

and then set the properties:

 row0item.text = "Walk the dog"
 row0item.checked = false

You repeat this for the other four rows. Each row gets its own ChecklistItem object
that you store in its own instance variable.

This is essentially doing the same thing as before, except that this time the text
and checked variables are not separate instance variables of the view controller but
properties of the ChecklistItem objects.

➤ Run the app just to make sure that everything works again.

Putting the text and checked properties into their own ChecklistItem object already
improved the code, but it is still a bit unwieldy.

With the current approach, you need to keep around a ChecklistItem instance
variable for each row. That’s not ideal, especially not if you want more than just a
handful of rows.

Time to put that array into action!

➤ In ChecklistViewController.swift, throw away all the instance variables and
replace them with a single array variable named items:

class ChecklistViewController: UITableViewController {

 var items: [ChecklistItem]

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 53

Instead of five different instance variables, one for each row, you now have just one
variable for the array.

This looks similar to how you declared the previous variables but this time there are
square brackets around ChecklistItem. Those square brackets indicate that this is
going to be an array.

➤ Make the following changes in init?(coder):

required init?(coder aDecoder: NSCoder) {
 items = [ChecklistItem]() // add this line

 let row0item = ChecklistItem() // let
 row0item.text = "Walk the dog"
 row0item.checked = false
 items.append(row0item) // add this line

 let row1item = ChecklistItem() // let
 row1item.text = "Brush my teeth"
 row1item.checked = true
 items.append(row1item) // add this line

 let row2item = ChecklistItem() // let
 row2item.text = "Learn iOS development"
 row2item.checked = true
 items.append(row2item) // add this line

 let row3item = ChecklistItem() // let
 row3item.text = "Soccer practice"
 row3item.checked = false
 items.append(row3item) // add this line

 let row4item = ChecklistItem() // let
 row4item.text = "Eat ice cream"
 row4item.checked = true
 items.append(row4item) // add this line

 super.init(coder: aDecoder)
}

This is not so different from before, except that you first create – or instantiate –
the array object:

 items = [ChecklistItem]()

You’ve seen that the notation [ChecklistItem] means an array of ChecklistItem
objects. But that is just the data type of the items variable; it is not the actual array
object yet.

To get the array object you have to construct it first. That is what the parentheses
() are for: they tell Swift to make the new array object.

The data type is like the brand name of a car. Just saying the words “Porsche 911”
out loud doesn’t magically get you a new car – you actually have to go to the dealer

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 54

to buy one.

The parentheses () behind the type name are like going to the object dealership to
buy an object of that type. The parentheses tell Swift’s object factory, “Build me an
object of the type array-with-ChecklistItems.”

It is important to remember that just declaring that you have a variable does not
automatically make the corresponding object for you. The variable is just the
container for the object. You still have to instantiate the object and put it into the
container. The variable is the box and the object is the thing inside the box.

So until you order an actual array-of-ChecklistItems object from the factory and
put that into items, the variable is empty. And empty variables are a big no-no in
Swift.

Just to drive this point home:

// This declares that items will hold an array of ChecklistItem objects
// but it does not actually create that array.
// At this point, items does not have a value yet.
var items: [ChecklistItem]

// This instantiates the array. Now items contains a valid array object,
// but the array has no ChecklistItem objects inside it yet.
items = [ChecklistItem]()

Each time you make a ChecklistItem object, you also add it into the array:

// This instantiates a new ChecklistItem object. Notice the ().
let row0item = ChecklistItem()

// Give values to the data items inside the new ChecklistItem object.
row0item.text = "Walk the dog"
row0item.checked = false

// This adds the ChecklistItem object into the items array.
items.append(row0item)

Notice that you’re also using the parentheses here to create each of the individual
ChecklistItem objects.

It’s also important that row0item and the others are now local to the init method.
They are no longer valid instance variable names (because you removed those
earlier). That’s why you need to use the let keyword; without it, the app won’t
compile.

At the end of init?(coder), the items array contains five ChecklistItem objects.
This is your new data model.

Now that you have all your rows in the items array, you can simplify the table view
data source and delegate methods once again.

➤ Change these methods:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 55

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)

 let item = items[indexPath.row]

 let label = cell.viewWithTag(1000) as! UILabel
 label.text = item.text

 configureCheckmark(for: cell, at: indexPath)
 return cell
}

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 let item = items[indexPath.row]
 item.checked = !item.checked

 configureCheckmark(for: cell, at: indexPath)
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

func configureCheckmark(for cell: UITableViewCell,
 at indexPath: IndexPath) {
 let item = items[indexPath.row]

 if item.checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
}

That’s a lot simpler than what you had before! Each method is now only a handful
of lines long.

In each method, you do:

let item = items[indexPath.row]

This asks the array for the ChecklistItem object at the index that corresponds to
the row number. Once you have that object, you can simply look at its text and
checked properties and do whatever you need to do.

If the user were to add 100 to-do items to this list, then none of this code would
need to change. It works equally well with five items as with a hundred (or a
thousand).

Speaking of the number of items, you can now change “numberOfRowsInSection” to
return the number of items in the array, instead of a hard-coded number.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 56

➤ Change the tableView(numberOfRowsInSection) method to:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
}

Not only is the code a lot shorter and easier to read, it can now also handle an
arbitrary number of rows. That is the power of arrays.

➤ Run the app and see for yourself. It should still do exactly the same as before but
its internal structure is much better.

Exercise: Add a few more rows to the table. You should only have to change init?
(coder) for this to work.

Cleaning up the code
There are a few more things you can do to improve the source code.

➤ Replace the configureCheckmark(for:at:) method with this one:

func configureCheckmark(for cell: UITableViewCell,
 with item: ChecklistItem) {
 if item.checked {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
}

Instead of an index-path, you now directly pass it the ChecklistItem object.

This again is an example of a parameter with an extra label, giving it the external
name with. It makes the full name of this method configureCheckmark(for:with:)
and that’s how you will call it from other places in the app. Inside the method itself
you use the local name for this parameter, item.

Why did you change this method? Previously it received an index-path and then did
this to find the corresponding ChecklistItem:

let item = items[indexPath.row]

But in both “cellForRowAt” and “didSelectRowAt” you already do that as well. It is
simpler to pass that ChecklistItem object directly to configureCheckmark() instead
of making it do the same work twice. Anything that simplifies the code is good.

➤ Also add a new method:

func configureText(for cell: UITableViewCell,
 with item: ChecklistItem) {
 let label = cell.viewWithTag(1000) as! UILabel

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 57

 label.text = item.text
}

This sets the checklist item’s text on the cell’s label. Previously you did that in
“cellForRowAt” but it’s clearer to put that in its own method.

➤ Update tableView(cellForRowAt) so that it calls these new methods:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ChecklistItem", for: indexPath)

 let item = items[indexPath.row]

 configureText(for: cell, with: item)
 configureCheckmark(for: cell, with: item)
 return cell
}

➤ Also update tableView(didSelectRowAt):

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 if let cell = tableView.cellForRow(at: indexPath) {
 let item = items[indexPath.row]
 item.toggleChecked()
 configureCheckmark(for: cell, with: item)
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

This no longer modifies the ChecklistItem’s checked property directly but calls a
new method named toggleChecked() on the item object.

You still need to add this new method to the ChecklistItem object otherwise the
app won’t run.

➤ Open ChecklistItem.swift and add the following method:

func toggleChecked() {
 checked = !checked
}

Naturally, your own objects can also have methods. As you can see, this method
does exactly what “didSelectRowAt” used to do, except that you’ve added this bit of
functionality to ChecklistItem instead.

A good object-oriented design principle is that you should let objects change their
own state as much as possible. Previously, the view controller implemented this
toggling behavior but now ChecklistItem knows how to toggle itself on or off.

➤ Run the app, and well, it still should work exactly the same as before – but the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 58

code is a lot better. You can now have lists with thousands of to-do items, for those
especially industrious users. :-)

If you want to check your work, you can find the project files for the current version
of the app in the folder 02 - Arrays in the tutorial’s Source Code folder.

Clean up that mess!

So what’s the point of making all of these changes if the app still works exactly
the same? For one, the code is much cleaner and that helps to avoid bugs. By
using an array you’ve also made the code more flexible. The table view can
now handle any number of rows.

You’ll find that when you are programming you are constantly restructuring
your code to make it better. It’s impossible to do the whole thing 100% perfect
right from the start.

So you write code until it becomes messy and then you clean it up. After a
little while it becomes a big mess again and you clean it up again. The process
for cleaning up code is called refactoring and it’s a cycle that never ends.

There are a lot of programmers who never do clean up their code. The result is
what we call “spaghetti code” and it’s a horrible mess to maintain.

If you haven’t looked at your code for several months but need to add a new
feature or fix a bug, you may need some time to read it through to understand
again how everything fits together.

It’s in your own best interest to write code that is as clean as possible,
otherwise untangling that spaghetti mess is no fun.

Adding new items to the checklist
So far your table view contains a handful of fixed rows but the idea behind this app
is that users can create their own lists. Therefore, you need to give the user the
ability to add to-do items.

In this section you’ll expand the app to have a so-called navigation bar at the top.
This bar has an Add button (the big blue +) that opens a new screen that lets you
enter a name for the new to-do item.

When you tap Done, the new item will be added to the list.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 59

The + button in the navigation bar opens the Add Item screen

Presenting a new screen to add items is a common pattern in a lot of apps. Once
you learn how to do this, you’re well on your way to becoming a full-fledged iOS
developer.

What you’ll do in this section:

• Add a navigation controller

• Put the Add button into the navigation bar

• Add a fake item to the list when you press the Add button

• Delete items with swipe-to-delete

• Open the Add Item screen that lets the user type the text for the item

As always, we take it in small steps. After you’ve put the Add button on the screen,
you’ll first write the code to add a “fake” item to the list. Instead of writing all of the
code for the Add Item screen at once, you simply pretend that some parts of it
already exist.

Once you’ve learned how to add fake items, you can build the Add Item screen for
real.

Navigation controllers
First, let’s add the navigation bar. You may have seen in the Object Library that
there is an object named Navigation Bar. You can drag this into your view and put it
at the top. However, you won’t do that here.

Instead, you will embed the view controller inside a navigation controller.

Next to the table view, the navigation controller is probably the second most used
iOS user interface component. It is the thing that lets you go from one page to

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 60

another:

A navigation controller in action

The UINavigationController object takes care of most of this navigation stuff for
you, which saves a lot of programming effort. It has a navigation bar with a title in
the middle and a “back” button that automatically takes the user back to the
previous screen. You can put a button of your own on the right.

Adding a navigation controller is really easy.

➤ Open Main.storyboard and select the Checklist View Controller.

➤ From the menu bar at the top of the screen, choose Editor → Embed In →
Navigation Controller.

Putting the view controller inside a navigation controller

That’s it. Interface Builder has now added a new Navigation Controller scene and
made a relationship between it and your view controller.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 61

The navigation controller is now linked with your view controller

When the app starts up, the Checklist View Controller is automatically put inside a
navigation controller.

➤ Run the app and try it out.

The app now has a navigation bar at the top

The only thing different (visually) is that the app now has a navigation bar at the
top. Thanks to this, the status bar no longer overlaps the label from the first cell.

➤ Go back to the storyboard and double-click on the navigation bar inside the
Checklist View Controller to make the title editable. (You need to double-click
roughly in the center of the navigation bar for this to work.)

Give it the name Checklists.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 62

Changing the title in the navigation bar

What you’re doing here, is changing a Navigation Item object that was
automatically added to the view controller when you chose the Embed In command.

The Navigation Item object contains the title and buttons that appear in the
navigation bar when this view controller becomes active. Each embedded view
controller has its own Navigation Item that it uses to configure what shows up
inside the navigation bar.

When the navigation controller slides a new view controller into the screen, it
replaces the contents of the navigation bar with that view controller’s Navigation
Item.

➤ Go to the Object Library and look for Bar Button Item. Drag it into the right-
side slot of the navigation bar.

Be sure to use the navigation bar on the Checklist View Controller, not the one from
the navigation controller!

Dragging a Bar Button Item into the navigation bar

By default this new button is named “Item” but for this app you want it to have a
big + sign.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 63

➤ In the Attributes inspector for the bar button item, choose System Item:
Add.

Bar Button Item attributes

If you look through that list you’ll see a lot of predefined bar button types: Add,
Compose, Reply, Camera, and so on. You can use these in your own apps but only
for their intended purpose.

You shouldn’t use the camera icon on a button that sends an email, for example.
Improper use of these icons may lead Apple to reject your app from the App Store
and that sucks.

OK, that gives us a button. If you run the app, it should look like this:

The app with the Add button

Of course, pressing the button doesn’t actually do anything yet because you haven’t
hooked it up to an action. In a little while you will create a new screen, the “Add
Item” screen, and show it when the button is tapped. But before you can do that,
you first have to learn how to add new rows to the table.

Let’s hook up the Add button to an action. You got plenty of exercise with this in the
previous tutorial, so this shouldn’t be too much of a problem.

➤ Add a new action method to ChecklistViewController.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 64

@IBAction func addItem() {
}

You’re leaving this empty for the moment, but it needs to be there so you have
something to connect the button to.

➤ Open the storyboard and hook up the Add button to this action. To do this, Ctrl-
drag from the + button to the Checklist View Controller item in the sidebar:

Ctrl-drag from Add button to Checklist View Controller

Or, even simpler, Ctrl-drag from the Add button to the yellow circle in the dock area
above the scene:

Ctrl-drag from Add button to the view controller (alternative method)

In fact, you can Ctrl-drag from the Add button to almost anywhere into the same
scene to make the connection (dragging onto the status bar area is a good spot).

➤ After dragging, pick addItem from the popup (under Sent Actions):

Connecting to the addItem action

➤ Let’s give addItem() something to do. Back in ChecklistViewController.swift,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 65

fill out the body of that method:

@IBAction func addItem() {
 let newRowIndex = items.count

 let item = ChecklistItem()
 item.text = "I am a new row"
 item.checked = false
 items.append(item)

 let indexPath = IndexPath(row: newRowIndex, section: 0)
 let indexPaths = [indexPath]
 tableView.insertRows(at: indexPaths, with: .automatic)
}

Inside this method you create a new ChecklistItem object and add it to the data
model (the items array). You also have to tell the table view, “I’ve inserted a row at
this index, please update yourself.”

Let’s take it section by section:

 let newRowIndex = items.count

You need to calculate what the index of the new row in your array should be. This is
necessary in order to properly update the table view.

When you start the app there are 5 items in the array and 5 rows on the screen.
Computers start counting at 0, so the existing rows have indexes 0, 1, 2, 3 and 4.
To add the new row to the end of the array, the index for that new row must be 5.

In other words, when you’re adding a row to the end of a table view, the index for
the new row is always equal to the number of items currently in that table. Let that
sink in for a second.

You put the index for the new row in the local constant newRowIndex. This can be a
constant instead of a variable because it never has to change.

The following few lines should look familiar:

 let item = ChecklistItem()
 item.text = "I am a new row"
 item.checked = false
 items.append(item)

You have seen this code before in init?(coder). It creates the new ChecklistItem
object and adds it to the end of the array.

The data model now consists of 6 ChecklistItem objects inside the items array.
Note that at this point newRowIndex is still 5 even though items.count is now 6.
That’s why you read the item count and stored this value in newRowIndex before you
added the new item to the array.

Just adding the new ChecklistItem object to the data model’s array isn’t enough.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 66

You also have to tell the table view about this new row so it can add a new cell for
that row.

 let indexPath = IndexPath(row: newRowIndex, section: 0)

As you know by now, table views use index-paths to identify rows, so first you
make an IndexPath object that points to the new row, using the row number from
the newRowIndex variable. This index-path object now points to row 5 (in section 0).

The next line creates a new, temporary array holding just the one index-path item:

 let indexPaths = [indexPath]

You will use the table view method insertRows(at:with:) to tell the table view
about the new row, but as its name implies this method actually lets you insert
multiple rows at the same time.

Instead of a single IndexPath object, you need to give it an array of index-paths.
Fortunately it is easy to create an array that contains a single index-path object by
writing [indexPath]. The notation [] creates a new Array object that contains the
objects between the brackets.

Finally, you tell the table view to insert this new row. The “with: .automatic”
parameter makes the table view use a nice animation when it inserts the row:

 tableView.insertRows(at: indexPaths, with: .automatic)

To recap, you:

1. created a new ChecklistItem object

2. added it to the data model, and

3. inserted a new cell for it in the table view.

➤ Try it out. You can now add many new rows to the table. You can also tap these
new rows to turn their checkmarks on and off again. When you scroll the table up
and down, the checkmarks stay with the proper rows.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 67

After adding new rows with the + button

Remember, the rows always have to be added to both your data model and the
table view. When you send the insertRows(at:with:) message to the table view,
you say: “Hey table, my data model has a bunch of new items added to it.”

This is important! If you forget to tell the table view about your new items or if you
tell the table view there are new items but you don’t actually add them to your data
model, then your app will crash. These two things always have to be in sync.

Exercise: Give the new items checkmarks by default.

Deleting rows
While you’re at it, you might as well give users the ability to delete rows.

A common way to do this in iOS apps is “swipe-to-delete”. You swipe your finger
over a row and a Delete button slides into the screen. A tap on the Delete button
confirms the removal, tapping anywhere else will cancel.

Swipe-to-delete in action

Swipe-to-delete is very easy to implement.

➤ Add the following method to ChecklistViewController.swift. Just to keep

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 68

things organized, I suggest you put this near the other table view methods.

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 // 1
 items.remove(at: indexPath.row)

 // 2
 let indexPaths = [indexPath]
 tableView.deleteRows(at: indexPaths, with: .automatic)
}

When the “commitEditingStyle” method is present in your view controller (it comes
from the table view data source), the table view will automatically enable swipe-to-
delete. All you have to do is:

1. remove the item from the data model, and

2. delete the corresponding row from the table view.

This mirrors what you did in addItem(). Again you make a temporary array with
only one index-path object and then tell the table view to remove the rows with an
animation.

➤ Run the app to try it out!

If at any point you got stuck, you can refer to the project files for the app from the
03 - Data Model folder in the tutorial’s Source Code folder.

Destroying objects
When you do items.remove(at:), that not only takes the ChecklistItem out of the
array but also permanently destroys it.

We’ll talk more about this in the next tutorial, but if there are no more references to
an object, it is automatically destroyed. As long as a ChecklistItem object sits
inside an array, that array has a reference to it.

But when you pull that ChecklistItem out of the array, the reference goes away and
the object is destroyed. Or in computer-speak, it is deallocated.

What does it mean for an object to be destroyed? Each object occupies a small
section of the computer’s memory. When you create an object instance, a chunk of
memory is reserved to hold the object’s data items.

If the object is deallocated, that memory becomes available again and will
eventually be occupied by new objects. After it has been deleted, the object does

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 69

not exist anymore and you can no longer use it.

On older versions of iOS you had to take care of this memory bookkeeping by hand.
Fortunately times have changed for the better. Swift uses a mechanism called
Automatic Reference Counting or ARC to manage the lifetime of the objects in your
app, freeing you from having to worry about that bookkeeping. I like not having to
worry about things!

The Add Item screen
You’ve learned how to add new rows to the table, but all of these rows get the
same text. You will now change the addItem() action to open a new screen that lets
the user enter his or her own text for those new ChecklistItems.

The Add Item screen

The plan for this section:

• Create the Add Item screen using the power of storyboarding

• Add a text field and allow the user to type into it using the on-screen keyboard

• Recognize when the user presses Cancel or Done on the Add Item screen

• Create a new ChecklistItem with the text from the text field

• Add the new ChecklistItem object to the table on the main screen

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 70

A new screen means a new view controller, so you begin by adding a new scene to
the storyboard.

➤ Go to the Object Library and drag a new Table View Controller (not a regular
view controller) into the storyboard canvas.

Dragging a new Table View Controller into the canvas

You may need to zoom out to fit everything properly. Right-click on the canvas to
get a popup with zoom options, or use the - 100% + controls at the bottom of the
Interface Builder canvas. (You can also double-click on an empty spot in the canvas
to zoom in or out.)

➤ With the new view controller in place, select the Add button from the Checklist
View Controller. Ctrl-drag to the new view controller.

Ctrl-drag from the Add button to the new table view controller

Let go of the mouse and a list of options pops up:

The Action Segue popup

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 71

The options in this menu are the different types of connections you can make
between the Add button and the new screen.

➤ Choose Show from the menu.

This type of connection is named a segue (if you’re not a native English speaker,
that is pronounced “seg-way” like the strange scooters that you can stand on).

The segue is represented by the arrow between the two view controllers:

A new segue is added between the two view controllers

➤ Run the app to see what it does.

When you press the Add button, a new empty table slides in from the right. You can
press the back button – the one that says “Checklists” – at the top to go back to
the previous screen.

The screen that shows up after you press the Add button

You didn’t even have to write any code and you have yourself a working navigation
controller!

Note that the Add button no longer adds a new row to the table. That connection
has been broken and is replaced by the segue. Just in case, you should remove the
button’s connection with the addItem action.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 72

➤ Select the Add button, go to the Connections inspector, and press the small X
next to addItem.

Removing the addItem action from the Add button

Notice that this inspector also shows the connection with the segue that you’ve just
made (under Triggered Segues).

So now you have a new table view controller that slides into the screen when you
press the Add button. This isn’t actually what you want, though. For a screen that
lets you add new items, it is better to use a so-called modal segue.

➤ Click the arrow between the two view controllers to select the segue.

A segue is an object like any other (remember, everything is an object!) and as
such it has attributes that you can change.

➤ In the Attributes inspector, choose Kind: Present Modally.

Changing the segue style to Present Modally

The navigation bar now disappears from the new view controller. This new screen is
no longer presented as part of the navigation hierarchy, but as a separate screen
that lies on top of the existing one.

➤ Run the app to see the difference.

When you do, you’ll notice that you no longer have a way to go back to the
previous screen. Eek! Getting stuck is not something users appreciate…

Modal screens usually have a navigation bar with a Cancel button on the left and a
Done button on the right. (In some apps the button on the right is called Save or

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 73

Send.)

Pressing either of these buttons will close the screen, but only Done will save your
changes.

The easiest way to add a navigation bar and these two buttons is to wrap the view
controller for the Add Item screen into a navigation controller of its own. The steps
to do this are the same as before:

➤ Select the table view controller (the new one), choose Editor → Embed In →
Navigation Controller.

Now the storyboard looks like this:

Two table view controllers that are both embedded in their own navigation controllers

The new navigation controller has been inserted in between the two table view
controllers. The Add button now performs a modal segue to the new navigation
controller.

➤ Double-click the navigation bar in the right-most table view controller to edit its
title and change it to Add Item. (You can also change this in the Attributes
inspector for the Navigation Item.)

➤ Drag two Bar Button Items into the navigation bar, one in the left slot and one
in the right slot.

The navigation bar items for the new screen

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 74

➤ In the Attributes inspector for the left button choose System Item: Cancel.

➤ For the right button choose Done for both System Item and Style attributes.

Don’t type anything into the button’s Title field. The Cancel and Done buttons are
built-in button types that automatically use the proper text. If your app runs on an
iPhone where the language is set to something other than English, these predefined
buttons are automatically translated into the user’s language.

➤ Run the app and you’ll see that your new screen has Cancel and Done buttons.

The Cancel and Done buttons in the app

The new buttons look good! But you still need to tell the app what to do when they
get tapped…

Note: Xcode may be giving you the warning, “Prototype table cells must have
reuse identifiers”. You will fix this issue soon.

Making your own view controller object
The Cancel and Done buttons ought to close the Add Item screen and return the
app to the main screen, but tapping them has no effect yet.

In the next tutorial you will learn how to perform such a “backwards” segue directly
in the storyboard, but here you will do it by writing code – in other words, you have
to hook up these buttons to action methods.

Where do you put these action methods? Not in ChecklistViewController.swift
because that is not the view controller you’re dealing with here.

Instead, you have to make a new view controller source code file specifically for the
Add Item screen and connect it to the scene that you’ve just designed in Interface
Builder.

➤ Right-click on the Checklists group in the project navigator (the yellow icon) and
choose New File… Choose the Swift File template.

➤ Save the file as AddItemViewController.swift. This adds the new file to the
project, but apart from some comments and a single line of code, the file is empty.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 75

➤ Add the following lines to the new file:

import UIKit

class AddItemViewController: UITableViewController {

}

This tells Swift that you have a new object for a table view controller that goes by
the name of AddItemViewController. You’ll add the rest of the code soon. First, you
have to let the storyboard know about this new view controller too.

➤ In the storyboard, select the table view controller and go to the Identity
inspector. Under Custom Class, type AddItemViewController.

This tells the storyboard that the view controller from this scene is actually your
new AddItemViewController object.

Changing the class name of the AddItemViewController

Don’t forget this step! Without it, the Add Item screen will simply not work.

Make sure that it is really the view controller that is selected before you change the
fields in the Identity inspector (the scene needs to have a blue border). A common
mistake is to select the table view and change that.

You will now implement the action methods in AddItemViewController.swift.

➤ Add the new cancel() and done() action methods:

@IBAction func cancel() {
 dismiss(animated: true, completion: nil)
}

@IBAction func done() {
 dismiss(animated: true, completion: nil)
}

This tells the app to close the Add Item screen with an animation.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 76

You still need to hook up the Cancel bar button to the cancel() action and the Done
bar button to the done() action.

➤ Open the storyboard and find the Add Item View Controller. Ctrl-drag from the
bar buttons to the yellow icon and pick the proper action from the popup menu.

Ctrl-dragging from the bar button to the view controller

➤ Run the app to try it out. The Cancel and Done buttons now return the app to the
main screen.

What do you think happens to the AddItemViewController object when you dismiss
it? After the view controller disappears from the screen, its object is destroyed and
the memory it was using is reclaimed by the system.

Every time the user opens the Add Item screen, the app makes a new instance for
it. This means a view controller object is only alive for the duration that the user is
interacting with it; there is no point in keeping it around afterwards.

Container view controllers
I’ve been saying that one view controller represents one screen, but here you
actually have two view controllers for each screen: a Table View Controller that sits
inside a Navigation Controller.

The Navigation Controller is a special type of view controller that acts as a container
for other view controllers. It comes with a navigation bar and has the ability to
easily go from one screen to another, by sliding them in and out of sight. The
container essentially “wraps around” these screens.

The Navigation Controller is just the frame that contains the view controllers that
do the real work, which are known as the “content” controllers. Here, the
ChecklistViewController provides the content for the first screen; the content for

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 77

the second screen comes from the AddItemViewController.

Another often-used container is the Tab Bar Controller, which you’ll see in the next
tutorial.

On the iPad, container view controllers are even more commonplace. View
controllers on the iPhone are full-screen but on the iPad they often occupy only a
portion of the screen, such as the content of a popover or one of the panes in a
split-view.

Static table cells
Let’s change the look of the Add Item screen. Currently it is an empty table with a
navigation bar on top, but I want it to look like this:

What the Add Item screen will look like when you’re done

➤ Open the storyboard and select the Table View object inside the Add Item View
Controller.

➤ In the Attributes inspector, change the Content setting from Dynamic
Prototypes to Static Cells.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 78

Changing the table view to static cells

You use static cells when you know beforehand how many sections and rows the
table view will have. This is handy for screens that require the user to enter data,
such as the one you’re building here.

You can design the rows directly in the storyboard. For a table with static cells you
don’t need to provide a data source, and you can hook up the labels and other
controls from the cells directly to outlets on the view controller.

As you can see in the outline pane on the left, the table view now has a Table View
Section object hanging under it, and three Table View Cells in that section. (You
may need to expand the Table View item first by clicking the arrow next to it.)

The table view has a section with three static cells

➤ Click on the bottom two cells and delete them (press the delete key on your
keyboard). You only need one cell for now.

➤ Select the Table View again and in the Attributes inspector set its Style to
Grouped. That gives us the look we want.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 79

The table view with grouped style

Next up, you’ll add a text field component inside the table view cell that lets the
user type text.

➤ Drag a Text Field object into the cell and size it up nicely.

➤ In the Attributes inspector for the text field, set the Border Style to no
border (select the dotted box):

Adding a text field to the table view cell

➤ Run the app and press the + button to open the Add Item screen. Tap on the cell
and you’ll see the keyboard slide in from the bottom of the screen.

Any time you make a text field active, the keyboard automatically appears. You can
type into the text field by tapping on the letters. (On the Simulator, you can simply
type using your Mac’s keyboard.)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 80

You can now type text into the table view cell

Note: If the keyboard does not appear in the Simulator, press ⌘K or use the
Hardware → Keyboard → Toggle Software Keyboard menu option. You
can also use your normal Mac keyboard to type into the text field, even if the
on-screen keyboard is not visible. If that doesn't work, also select Hardware
→ Keyboard → Connect Hardware Keyboard from the menu.

Look what happens when you tap just outside the text field’s area, but still in the
cell (try tapping in the margins that surround the text field):

Whoops, that looks a little weird

The row turns gray because you selected it. That’s not what you want, so you
should disable selections for this row.

➤ In AddItemViewController.swift*, add the following method:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 return nil
}

This is another one of those table view delegate methods. When the user taps in a

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 81

cell, the table view sends the delegate a “willSelectRowAt” message that says: “Hi
delegate, I am about to select this particular row.”

By returning the special value nil, the delegate answers: “Sorry, but you’re not
allowed to!”

Return to sender
You’ve seen the return statement a few times now. You use return to send a value
from a method back to the method that called it.

Let’s take a more detailed look at what it does.

Methods call other methods and receive values in return.

You cannot just return any value. The value you return must be of the data type
that is specified after the -> arrow that follows the method name.

For example, tableView(numberOfRowsInSection) must return an Int value, which is
any whole number:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 1
}

If instead you were to write,

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return "1"
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 82

then the compiler would give an error message, as "1" is a string, not an Int. To a
human reader they look similar and you can easily understand the intent, but Swift
isn’t that tolerant. Data types have to match or it just isn’t allowed.

Your most recent version of this method looks like this:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
}

That is also a valid return statement because items is an Array and the count
property from Array also has the type Int.

The tableView(cellForRowAt) method is supposed to return a UITableViewCell
object:

override func tableView(_tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "TheCellIdentifier", for: indexPath)
 . . .
 return cell
}

The local constant cell contains a UITableViewCell object, so it’s OK to return the
value of cell from the method.

The tableView(willSelectRowAt) method is supposed to return an IndexPath object.
However, you can also make it return “nil”, which means no object.

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 return nil
}

That’s what the ? behind -> IndexPath? is for: The question mark tells Swift that
you can also return nil from this method. That is only allowed if there is a question
mark (or exclamation point) behind the return type.

The special value nil represents “no value” but it’s used to mean different things
throughout the iOS SDK. Sometimes it means “nothing found” or “don’t do
anything”. Here it means that the row should not be selected when the user taps it.

How do you know what nil means for a certain method? You can find that in the
documentation of the method in question.

In the case of “willSelectRowAt”, the iOS documentation says:

Return Value: An index-path object that confirms or alters the selected row.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 83

Return an IndexPath object other than indexPath if you want another cell to be
selected. Return nil if you don’t want the row selected.

This means you can either:

1. Return the same index-path you were given. This confirms that this row can be
selected.

2. Return another index-path in order to select another row.

3. Return nil to prevent the row from being selected, which is what you did.

So remember, you need to use the return statement to exit a method that expects
to return something. If you forget, then Xcode will give the following error: “Missing
return in a function expect to return”.

You’ve also seen methods that do not return anything:

@IBAction func addItem()

and:

func configureCheckmark(for cell: UITableViewCell,
 with item: ChecklistItem)

These methods do not have an -> arrow. Such a method does not pass a value back
to the caller and therefore does not need a return statement. (You can still use
return to exit from such methods but it may not be followed by a value.)

Strictly speaking, even methods without a return type do return a value, the so-
called empty tuple. Think of this as a special object that embodies the concept of
“nothing”. (Don’t confuse this with nil, which is an actual value.)

You sometimes see this written as:

func methodThatDoesNotReturnValue() -> ()

func anotherMethodThatDoesNotReturnValue() -> Void

The notation for an empty tuple is (), so in this context the parentheses mean
there is no return value. The term Void is a synonym for ().

But really, if a method does not return anything it’s just as easy to leave out the ->
arrow. It’s a rule that @IBAction methods never return a value.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 84

There is one more thing you need to do to prevent the row from going gray. It’s
already impossible to select the row, as you’ve just told the table view you won’t
allow it.

However, the cell also has a selection color property. Even if you make it impossible
for the row to be selected, sometimes UIKit still briefly draws the cell gray when
you tap it. Therefore it is best to also disable this selection color.

➤ In the storyboard, select the table view cell and go to the Attributes inspector.
Set the Selection attribute to None.

Now if you run the app, it is impossible to select the row and make it turn gray. Try
and prove me wrong! :-)

Reading from the text field
You have a text field in a table view cell that the user can type into, but how do you
read the text that the user has typed?

When the user taps Done, you need to get that text and somehow put it into a new
ChecklistItem and add it to the list of to-do items. This means the done() action
needs to be able to refer to the text field.

You already know how to refer to controls from within your view controller: use an
outlet. When you added outlets in the previous tutorial, I told you to type in the
@IBOutlet declaration in the source file and make the connection in the storyboard.

I’m going to show you a trick now that will save you some typing. You can let
Interface Builder do all of this automatically by Ctrl-dragging from the control in
question directly into your source code file.

➤ First, go to the storyboard and select the Add Item View Controller. Then
open the Assistant editor using the toolbar button. This button looks like two
circles:

Click the toolbar button to open the Assistant editor

This may make the screen a little crowded – there are now five horizontal panels
open. If you’re running out of space you might want to close the project navigator
and the utilities pane using the other toolbar buttons.

The Assistant editor opens a new pane on the right of the screen. In the Jump Bar
(the bar below the toolbar) it should say Automatic and the Assistant editor should
be displaying the AddItemViewController.swift file:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 85

The Assistant editor

“Automatic” means the Assistant editor figures out what other file is related to the
one you’re currently editing. When you’re editing the Storyboard, the related file is
the selected view controller’s Swift file.

(Sometimes Xcode can be a little dodgy here. If it shows you something other than
AddItemViewController.swift, then click in the Jump Bar to select that file.)

➤ With the storyboard and the Swift file side by side, select the text field. Then
Ctrl-drag from the text field into the Swift file:

Ctrl-dragging from the text field into the Swift file

When you let go, a popup appears:

The popup that lets you add a new outlet

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 86

➤ Choose the following options:

• Connection: Outlet

• Name: textField

• Type: UITextField

• Storage: Weak

Note: If “Type” does not say UITextField but UITableViewCell or UIView, then
you selected the wrong thing.

Make sure you’re Ctrl-dragging from the text field inside the cell, not the cell
itself. Granted, it’s kinda hard to see, being white on white. If you’re having
trouble selecting the text field, click that area several times in succession.

You can also Ctrl-drag from “No Border Style Text Field” in the outline pane.

➤ Press Connect and voila, Xcode has automatically inserted an @IBOutlet for you
and connected it to the text field object.

In code it looks like this:

@IBOutlet weak var textField: UITextField!

Just by dragging you have successfully hooked up the text field object with a new
property named textField. How easy was that!

Now you’ll modify the done() action to write the contents of this text field to the
Xcode debug area, the pane at the bottom of the screen where print() messages
show up. This is a quick way to verify that you can actually read what the user
typed.

➤ In AddItemViewController.swift, change done() to:

@IBAction func done() {
 print("Contents of the text field: \(textField.text!)")

 dismiss(animated: true, completion: nil)
}

You can make these changes directly inside the Assistant editor. It’s very handy that
you can edit the source code and the storyboard side-by-side.

➤ Run the app, press the + button and type something in the text field. When you
press Done, the Add Item screen should close and Xcode should reveal the Debug
pane with a message like this:

Contents of the text field: Hello, world!

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 87

Great, so that works. print() should be an old friend by now. It’s my faithful
debugging companion.

Recall that you can print the value of a variable by placing it inside \(…) in the
string. Here you used \(textField.text!) to print out the contents of the text
field’s text property. (I’ll explain what the exclamation point is for later.)

Note: Because the iOS Simulator already outputs a lot of debug messages of
its own, it may be a bit hard to find your print() messages in the Debug pane.
Luckily there is a Filter box at the bottom that lets you search for your own
messages.

Polishing it up
Before you’ll write the code to take the text and insert it as a new item into the list,
let’s improve the design and workings of the Add Item screen a little.

For instance, it would be nice if you didn’t have to tap into the text field in order to
bring up the keyboard. It would be more convenient if the keyboard automatically
appeared once the screen opens.

➤ To accomplish this, add a new method to AddItemViewController.swift,
viewWillAppear():

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 textField.becomeFirstResponder()
}

The view controller receives the viewWillAppear() message just before it becomes
visible. That is a perfect time to make the text field active. You do this by sending it
the becomeFirstResponder() message.

If you’ve done programming on other platforms, this is often called “giving the
control focus”. In iOS terminology, the control becomes the first responder.

➤ Run the app and go to the Add Item screen; you can start typing right away.

(Again note that the keyboard may not appear on the Simulator. Press ⌘+K to
bring it up. The keyboard will always appear when you run the app on an actual
device, though.)

It’s often little features like this that make apps a joy to use. Having to tap on the
text field before you can start typing gets old really fast. In this fast-paced age,
using their mobiles on the go, users don’t have the patience for that. Such minor
annoyances may be reason enough to switch to a competitor’s app. I always put a
lot of effort into making my apps as frictionless as possible.

With that in mind, let’s style the input field a bit.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 88

➤ Open the storyboard and select the text field. Go to the Attributes inspector
and set the following attributes:

• Placeholder: Name of the Item

• Font: System 17

• Adjust to Fit: Uncheck this

• Capitalization: Sentences

• Return Key: Done

The text field attributes

There are several options here that let you configure the keyboard that appears
when the text field becomes active.

If this were a field that only allowed numbers, for example, you would set the
Keyboard Type to Number Pad. If it were an email address field, you’d set it to E-
mail Address. For our purposes, the Default keyboard is appropriate.

You can also change the text that is displayed on the keyboard’s Return Key. By
default it says “return” but you set it to “Done”. This is just the text on the button;
it doesn’t automatically close the screen. You still have to make the keyboard’s
Done button trigger the same action as the Done button from the navigation bar.

➤ Make sure the text field is selected and open the Connections inspector. Drag
from the Did End on Exit event to the view controller and pick the done action.

If you still have the Assistant editor open, you can also drag directly to the source
code for the done() method:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 89

Connecting the text field to the done() action method

To see the connections for the done action, click on the circle in the margin next to
the method name. The popup shows that done() is now connected to both the bar
button and the text field:

Viewing the connections for the done() method

➤ Run the app. Pressing Done on the keyboard will now close the screen and print
the text to the debug area.

The keyboard now has a big blue Done button

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 90

It’s always good to validate the input from the user to make sure what they’re
entering is acceptable. For instance, what should happen if the user immediately
taps the Done button on the Add Item screen without entering any text?

Adding a to-do item to the list that has no text is not very useful, so in order to
prevent this you should disable the Done button when no text has been typed yet.

Of course, you have two Done buttons to take care of, one on the keyboard and one
in the navigation bar. Let’s start with the Done button from the keyboard as this is
the simplest one to fix.

➤ On the Attributes inspector for the text field, check Auto-enable Return Key.

That’s it. Now when you run the app the Done button on the keyboard
automatically is disabled when there is no text in the text field. Try it out!

The Auto-enable Return Key option disables the return key when there is no text

For the Done button in the navigation bar you have to do a little more work. You
have to check the contents of the text field after every keystroke to see if it is now
empty or not. If it is, then you disable the button.

The user can always press Cancel, but Done only works when there is text.

In order to listen to changes to the text field – which may come from taps on the
keyboard but also from cut/paste – you need to make the view controller a delegate
for the text field.

The text field will send events to this delegate to let it know what is going on. The
delegate, which will be the AddItemViewController, can then respond to these
events and take appropriate actions.

A view controller is allowed to be the delegate for more than one object. The
AddItemViewController is already a delegate (and data source) for the UITableView
(because it is a UITableViewController). Now it will also become the delegate for
the text field object, UITextField.

These are two different delegates and you make the view controller play both roles.
Later in this tutorial you’ll add even more delegates.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 91

How to become a delegate
Delegates are used everywhere in the iOS SDK, so it’s good to remember that it
always takes three steps to become someone’s delegate.

1. You declare yourself capable of being a delegate. To become the delegate for
UITextField you need to include UITextFieldDelegate in the class line for the
view controller. This tells the compiler that the view controller can actually
handle the notification messages that the text field sends to it.

2. You let the object in question, in this case the UITextField, know that the view
controller wishes to become its delegate. If you forget to tell the text field that it
has a delegate, it will never send you any notifications.

3. Implement the delegate methods. It makes no sense to become a delegate if
you’re not responding to the messages you’re being sent!

Often, delegate methods are optional, so you don’t need to implement all of them.
For example, UITextFieldDelegate actually declares seven different methods but
you only care about textField(shouldChangeCharactersIn, replacementString) for
this app.

➤ In AddItemViewController.swift, add UITextFieldDelegate to the class
declaration:

class AddItemViewController: UITableViewController, UITextFieldDelegate

The view controller now says, “I can be a delegate for text field objects.”

You also have to let the text field know that you have a delegate for it.

➤ Go to the storyboard and select the text field.

There are several different ways in which you can hook up the text field’s delegate
outlet to the view controller. I prefer to go to its Connections inspector and drag
from delegate to the view controller’s little yellow icon:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 92

Drag from the Connections inspector to connect the text field delegate

You also have to add an outlet for the Done bar button item, so you can send it
messages from within the view controller in order to enable or disable it.

➤ Open the Assistant editor and make sure AddItemViewController.swift is
visible in the assistant pane.

➤ Ctrl-drag from the Done bar button into the Swift file and let go. Name the new
outlet doneBarButton.

This adds the following property:

@IBOutlet weak var doneBarButton: UIBarButtonItem!

➤ Add the following to AddItemViewController.swift, at the bottom:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 let oldText = textField.text! as NSString
 let newText = oldText.replacingCharacters(in: range, with: string)
 as NSString
 if newText.length > 0 {
 doneBarButton.isEnabled = true
 } else {
 doneBarButton.isEnabled = false
 }
 return true
}

This is one of the UITextField delegate methods. It is invoked every time the user
changes the text, whether by tapping on the keyboard or by cut/paste.

First, you figure out what the new text will be:

 let oldText = textField.text! as NSString
 let newText = oldText.replacingCharacters(in: range, with: string)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 93

 as NSString

The textField(shouldChangeCharactersIn, replacementString) delegate method
doesn’t give you the new text, only which part of the text should be replaced (the
range) and the text it should be replaced with (the replacement string).

You need to calculate what the new text will be by taking the text field’s text and
doing the replacement yourself. This gives you a new string object that you store in
the newText constant.

NSString vs. String

Text strings in Swift are of the data type String. But in the above method you
used something called NSString. What is the difference between the two?

NSString is the object that Objective-C programmers use for storing text. To
be honest, it is more powerful and often easier to use than Swift’s own String.

However, Swift has a trick up its sleeve: String and NSString are “bridged”,
meaning that you can use NSString in place of String. Here, you want to use
NSString’s replacingCharacters(in:with:) method, so you let Swift know that
it should treat the text as an NSString, not as a String.

The notation let oldText = . . . as NSString tells Swift that oldText should
be a constant of type NSString. If you were to leave out the “as NSString” bit,
Swift would use type inference to determine that it should be a regular Swift
String instead, which isn’t what you want here.

By the way, String isn’t the only thing that is bridged to an Objective-C type.
Another example is Array and its Objective-C counterpart NSArray. Because
the iOS frameworks are written in different language than Swift, sometimes
these little Objective-C holdovers creep in.

Once you have the new text, you check if it’s empty by looking at its length, and
enable or disable the Done button accordingly:

if newText.length > 0 {
 doneBarButton.isEnabled = true
} else {
 doneBarButton.isEnabled = false
}

➤ Run the app and type some text into the text field. Now remove that text and
you’ll see that the Done button in the navigation bar properly gets disabled when
the text field becomes empty.

One problem: The Done button is initially enabled when the Add Item screen opens,
but there is no text in the text field at that point so it really should be disabled. This
is simple enough to fix.

➤ In the storyboard, select the Done bar button and go to the Attributes

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 94

inspector. Uncheck the Enabled box.

The Done buttons are now properly disabled when there is no text in the text field:

You cannot press Done if there is no text

There is actually a slightly simpler way to write the above method.

➤ Replace the if-statement with just this line:

doneBarButton.isEnabled = (newText.length > 0)

The if-statement used to do this:

if newText.length > 0 {
 // you get here if the length is greater than 0
} else {
 // you get here if the length is equal to 0
}

You check the condition newText.length > 0. If that condition is true, i.e. the text
length is greater than 0, you set doneBarButton’s isEnabled property to true. If the
condition is false, you set the isEnabled property to false.

Notice that these sentences are basically saying: if the condition is true then
isEnabled becomes true but if the condition is false then isEnabled becomes false.
In other words, you always set the isEnabled property to the result of the
condition: true or false.

That makes it possible to skip the if, and simply do,

doneBarButton.isEnabled = the result of the condition

which in Swift reads as follows:

doneBarButton.isEnabled = (newText.length > 0)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 95

The () parentheses are not really necessary. You can also write it like this:

doneBarButton.isEnabled = newText.length > 0

However, I find this slightly less readable, so I use the parentheses to make it clear
beyond a doubt that newText.length > 0 is evaluated first and that the assignment
takes place after that.

To recap: If newText.length is greater than 0, doneBarButton.isEnabled becomes
true; otherwise it becomes false.

You can fit this into a single statement because the comparison operators all return
true or false depending on the condition. These are Swift’s comparison operators:

Remember this trick – whenever you see code like this,

if some condition {
 something = true
} else {
 something = false
}

you can write it simply as:

something = (some condition)

In practice it doesn’t really matter which version you use. I prefer the shorter one;
that’s what the pros do. Just remember that comparison operators such as == and >
always return true or false, so the extra if really isn’t necessary.

Adding new ChecklistItems
You now have an Add Item screen with a keyboard that lets the user enter text. The
app also properly validates the input so that you’ll never end up with text that is
empty.

But how do you get this text into a new ChecklistItem object that you can add to
the array from the Checklists screen?

Somehow you’ll have to make the Add Item screen let the Checklist View Controller

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 96

know that it is done. This is one of the fundamental tasks that every iOS app needs
to do: sending messages from one view controller to another.

Sending a ChecklistItem object to the screen with the items array

Exercise: How would you tackle this problem? The done() method needs to create
a new ChecklistItem object with the text from the text field (easy), then add it to
the items array and the table view in ChecklistViewController (not so easy).

Maybe you came up with something like this:

class AddItemViewController: UITableViewController, . . . {

 // This variable refers to the other view controller
 var checklistViewController: ChecklistViewController

 @IBAction func done() {
 // Create the new checklist item object
 let item = ChecklistItem()
 item.text = textField.text!

 // Directly call a method from ChecklistViewController
 checklistViewController.add(item)
 }
}

In this scenario, AddItemViewController has a variable that refers to the
ChecklistViewController, and done() calls its add() method with the new
ChecklistItem object.

This will work, but it’s not the iOS way. The big downside of this approach is that it
shackles these two view controller objects together.

As a general principle, if screen A launches screen B then you don’t want screen B
to know too much about the screen that invoked it (A). The less B knows of A, the
better.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 97

Screen A knows all about screen B, but B knows nothing of A

Giving AddItemViewController a direct reference to ChecklistViewController
prevents you from opening the Add Item screen from somewhere else in the app. It
can only ever talk back to ChecklistViewController. That’s a big disadvantage.

You won’t actually need to do this in the Checklists app, but in many apps it’s
common for one screen to be accessible from multiple places. For example, a login
screen that appears after the user has been logged out due to inactivity. Or a
details screen that shows more information about a tapped item, no matter where
that item is located in the app (you’ll see an example of this in the next tutorial).

Therefore, it’s best if AddItemViewController doesn’t know anything about
ChecklistViewController.

But if that’s the case, then how can you make the two communicate?

The solution is to make your own delegate.

You’ve already seen delegates in a few different places: The table view has a
delegate that responds to taps on the rows. The text field has a delegate that you
used to validate the length of the text. And the app also has something named the
AppDelegate (see the project navigator).

You can’t turn a corner in this place without bumping into a delegate…

The delegate pattern is commonly used to handle the situation you find yourself in:
Screen A opens screen B. At some point screen B needs to communicate back to
screen A, usually when it closes.

The solution is to make screen A the delegate of screen B, so that B can send its
messages to A whenever it needs to.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 98

Screen A launches screen B and becomes its delegate

The cool thing about the delegate pattern is that screen B doesn’t really know
anything about screen A. It just knows that some object is its delegate. Other than
that, screen B doesn’t care who that is.

Just like UITableView doesn’t really care about your view controller, only that it
delivers table view cells when the table view asks for them.

This principle, where screen B is independent of screen A yet can still talk to it, is
called loose coupling and is considered good software design practice.

This is what Screen B sees: only the delegate part, not the rest of screen A

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 99

You will use the delegate pattern to let the AddItemViewController send notifications
back to the ChecklistViewController, without it having to know anything about this
object.

Delegates go hand-in-hand with protocols, a prominent feature of the Swift
language.

➤ At the top of AddItemViewController.swift, add this in between the import
and class lines (it is not part of the AddItemViewController object):

protocol AddItemViewControllerDelegate: class {
func addItemViewControllerDidCancel(_ controller: AddItemViewController)
func addItemViewController(_ controller: AddItemViewController,
 didFinishAdding item: ChecklistItem)
}

This defines the AddItemViewControllerDelegate protocol. You should recognize the
lines inside the protocol { ... } block as method declarations, but unlike other
methods they don’t have any source code in them. The protocol just lists the names
of the methods.

Think of the delegate protocol as a contract between screen B, in this case the Add
Item View Controller, and any screens that wish to use it.

Protocols
In Swift, a protocol doesn’t have anything to do with computer networks or meeting
royalty. It is simply a name for a group of methods.

A protocol doesn’t implement any of the methods it declares. It just says: any
object that conforms to this protocol must implement methods X, Y and Z.

The two methods listed in the AddItemViewControllerDelegate protocol are:

• addItemViewControllerDidCancel()

• addItemViewController(didFinishAdding)

Delegates often have very long method names!

The first method is for when the user presses Cancel, the second is for when she
presses Done. In that case, the didFinishAdding parameter passes along the new
ChecklistItem object.

To make the ChecklistViewController conform to this protocol, it must provide
implementations of these two methods. From then on you can refer to the
ChecklistViewController using just the protocol name.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 100

(If you’ve programmed in other languages before, you may recognize protocols as
being very similar to “interfaces”.)

Inside AddItemViewController, you can write the following to refer back to the
ChecklistViewController:

var delegate: AddItemViewControllerDelegate

The variable delegate is nothing more than a reference to some object that
implements the methods of this protocol. You can send messages to the object from
the delegate variable, without knowing what kind of object it really is.

Of course, you know the object from delegate is the ChecklistViewController but
AddItemViewController doesn’t need to be aware of that. All it sees is some object
that implements its delegate protocol.

If you wanted to, you could make some other object implement the protocol and
AddItemViewController would be perfectly OK with that. That’s the power of
delegation: you have removed – or abstracted away – the dependency between the
AddItemViewController and the rest of the app.

It may seem a little overkill for a simple app such as this, but delegates are one of
the cornerstones of iOS development. The sooner you master them, the better!

You’re not done yet in AddItemViewController.swift. The view controller must
have a property that it can use to refer to the delegate.

➤ Add this inside the class AddItemViewController, below the outlets:

weak var delegate: AddItemViewControllerDelegate?

It looks like a regular instance variable declaration, with two differences: weak and
the question mark.

Delegates are usually declared as being weak – not a statement of their moral
character but a way to describe the relationship between the view controller and its
delegate. Delegates are also optional (the question mark).

You’ll learn more about those things in a moment.

➤ Replace the cancel() and done() actions with the following:

@IBAction func cancel() {
 delegate?.addItemViewControllerDidCancel(self)
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 101

@IBAction func done() {
 let item = ChecklistItem()
 item.text = textField.text!
 item.checked = false

 delegate?.addItemViewController(self, didFinishAdding: item)
}

Let’s look at the changes you made. When the user taps the Cancel button, you
send the addItemViewControllerDidCancel() message back to the delegate.

You do something similar for the Done button, except that the message is
addItemViewController(didFinishAdding) and you pass along a new ChecklistItem
object that has the text string from the text field.

Note: It is customary for the delegate methods to have a reference to their
owner as the first (or only) parameter.

Doing this is not required but still a good idea. For example, in the case of
table views it may happen that an object is the delegate or data source for
more than one table view. In that case, you need to be able to distinguish
between those two table views. To allow for this, the table view delegate
methods have a parameter for the UITableView object that sent the
notification. Having this reference also saves you from having to make an
@IBOutlet for the table view.

That explains why you pass self to your delegate methods. Recall that self
refers to the object itself, in this case AddItemViewController. It’s also why the
method names start with the term “addItemViewController”.

➤ Run the app and try the Cancel and Done buttons. They no longer work!

I hope you’re not too surprised… The Add Item screen now depends on a delegate
to make it close, but you haven’t told the Add Item screen yet who its delegate is.

That means the delegate property has no value and the messages aren’t being sent
to anyone – there is no one listening for them.

Optionals
I mentioned a few times that variables and constants in Swift must always have a
value. In other programming languages the special symbol nil or NULL is often used
to indicate that a variable has no value. This is not allowed in Swift for normal
variables.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 102

The problem with nil and NULL is that they are a frequent cause of crashing apps. If
an app attempts to use a variable that is nil when you don’t expect it to be, the
app will crash. This is the dreaded “null pointer dereference”.

Swift stop this from happening by preventing you from using nil.

However, sometimes a variable does need to have “no value”. In that case you can
make it an optional. You mark something as optional in Swift using either a
question mark ? or an exclamation point !.

Only variables that are made optional can have the value nil.

You’ve already seen the question mark used with IndexPath?, the return type of
tableView(willSelectRowAt). Returning nil from this method is a valid response; it
means that the table should not select a particular row.

The question mark tells Swift that it’s OK for the method to return nil instead of an
actual IndexPath object.

The variable that refers to the delegate is usually marked as optional too. You can
tell because there is a question mark behind its type:

weak var delegate: AddItemViewControllerDelegate?

Thanks to the ? it’s perfectly acceptable for delegate to be nil.

You may be wondering why delegate would ever be nil. Doesn’t that negate the
idea of having a delegate in the first place? There are two reasons.

Often delegates are truly optional; a UITableView works fine even if you don’t
implement any of its delegate methods (but you do need to provide at least some
of its data source methods).

More importantly, when AddItemViewController is loaded from the storyboard and
instantiated, it won’t know right away who its delegate is. Between the time the
view controller is loaded and the delegate is assigned, the delegate variable will be
nil. And variables that can be nil, even if it is only temporary, must be optionals.

When delegate is nil, you don’t want cancel() or done() to send any of the
messages. Doing that would crash the app because there is no one to receive the
messages.

Swift has a handy shorthand for skipping the work when delegate is not set:

delegate?.addItemViewControllerDidCancel(self)

Here the ? tells Swift not to send the message if delegate is nil. You can read this
as, “Is there a delegate? Then send the message.” This practice is called optional
chaining and it’s used a lot in Swift.

In this app it should never happen that delegate is nil – that would get users stuck

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 103

on the Add Item screen – but Swift doesn’t know that. So you’ll have to pretend
that it can happen anyway and use optional chaining to send messages to the
delegate.

Optionals aren’t common in other programming languages, so they may take some
getting used to. I find that optionals do make programs clearer – most variables
never have to be nil, so it’s good to prevent them from becoming nil and avoid
these potential sources of bugs.

Remember, if you see ? or ! in a Swift program, you’re dealing with optionals. In
the course of this tutorial I’ll come back to this topic a few more times and explain
the finer points of using optionals in more detail.

Before you can give AddItemViewController its delegate, you first need to make the
ChecklistViewController suitable to play the delegate role.

➤ In ChecklistViewController.swift, change the class line to the following (this
goes all on one line):

class ChecklistViewController: UITableViewController,
 AddItemViewControllerDelegate {

This tells the compiler that ChecklistViewController now promises to do the things
from the AddItemViewControllerDelegate protocol.

If you try to run the app, Xcode gives an error: “Type ChecklistViewController does
not conform to protocol AddItemViewControllerDelegate.” That is correct: you still
need to add the methods that are listed in AddItemViewControllerDelegate.

➤ Add the implementations of the protocol’s methods to ChecklistViewController:

func addItemViewControllerDidCancel(
 _ controller: AddItemViewController) {
 dismiss(animated: true, completion: nil)
}

func addItemViewController(_ controller: AddItemViewController,
 didFinishAdding item: ChecklistItem) {
 dismiss(animated: true, completion: nil)
}

Currently these methods simply close the Add Item screen. This is what the
AddItemViewController used to do in its cancel() and done() actions. You’ve simply
moved that responsibility to the delegate.

The code that puts the new ChecklistItem object into the table view is left out for

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 104

now. You’ll add this in a moment, but there’s something else you need to do first.

Delegates in five easy steps

These are the steps for setting up the delegate pattern between two objects,
where object A is the delegate for object B, and object B will send messages
back to A. The steps are:

1 - Define a delegate protocol for object B.

2 - Give object B a delegate optional variable. This variable should be weak.

3 - Make object B send messages to its delegate when something interesting
happens, such as the user pressing the Cancel or Done buttons, or when it
needs a piece of information. You write delegate?.methodName(self, . . .)

4 - Make object A conform to the delegate protocol. It should put the name of
the protocol in its class line and implement the methods from the protocol.

5 - Tell object B that object A is now its delegate.

You’ve done steps 1 to 4, so there is one more thing you need to do (step 5): tell
AddItemViewController that the ChecklistViewController is its delegate.

The proper place to do that is in the prepare(for:sender:) method, also known as
prepare-for-segue.

The prepare(for:sender:) method is invoked by UIKit when a segue from one
screen to another is about to be performed. Recall that the segue is the arrow
between two view controllers in the storyboard.

Using prepare-for-segue allows you to give data to the new view controller before it
will be displayed. Usually you’ll do that by setting its properties.

➤ Add this method to ChecklistViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // 1
 if segue.identifier == "AddItem" {
 // 2
 let navigationController = segue.destination
 as! UINavigationController
 // 3
 let controller = navigationController.topViewController
 as! AddItemViewController
 // 4
 controller.delegate = self
 }
}

This is what prepare-for-segue does, step-by-step:

1. Because there may be more than one segue per view controller, it’s a good idea

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 105

to give each one a unique identifier and to check for that identifier first to make
sure you’re handling the correct segue. Swift’s == comparison operator does not
work on just numbers but also on strings and most other types of objects.

2. The new view controller can be found in segue.destination. The storyboard
shows that the segue does not go directly to AddItemViewController but to the
navigation controller that embeds it. So first you get ahold of this
UINavigationController object.

3. To find the AddItemViewController, you can look at the navigation controller’s
topViewController property. This property refers to the screen that is currently
active inside the navigation controller.

4. Once you have a reference to the AddItemViewController object, you set its
delegate property to self and the connection is complete. This tells the
AddItemViewController that from now on, the object known as self is its
delegate. But what is “self” here? Well, since you’re editing
ChecklistViewController.swift, self refers to the ChecklistViewController.

Excellent! ChecklistViewController is now the delegate of AddItemViewController.
It took some work, but you’re all set now.

➤ Open the storyboard and select the segue between the Checklist View Controller
and the Navigation Controller on its right.

➤ In the Attributes inspector, type AddItem into the Identifier field:

Naming the segue between the Checklists scene and the navigation controller

➤ Run the app to see if it works. (Make sure the storyboard is saved before you
press Run, or the app may crash.)

Pressing the + button will perform the segue to the Add Item screen with the
Checklists screen set as its delegate.

When you press Cancel or Done, AddItemViewController sends a message to its
delegate, ChecklistViewController. Currently the delegate simply closes the Add

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 106

Item screen, but now this works you can make it do more.

Let’s add the new ChecklistItem to the data model and table view. Finally!

➤ Change the implementation of the “didFinishAdding” delegate method in
ChecklistViewController.swift to the following:

func addItemViewController(_ controller: AddItemViewController,
 didFinishAdding item: ChecklistItem) {
 let newRowIndex = items.count
 items.append(item)

 let indexPath = IndexPath(row: newRowIndex, section: 0)
 let indexPaths = [indexPath]
 tableView.insertRows(at: indexPaths, with: .automatic)

 dismiss(animated: true, completion: nil)
}

This is largely the same as what you did in addItem() before. In fact, I simply
copied the contents of addItem() and pasted them into this delegate method.
Compare the two methods and see for yourself.

The only difference is that you no longer create the ChecklistItem object here; that
happens in the AddItemViewController. You merely have to insert this new object
into the items array.

As before, you tell the table view you have a new row for it and then close the Add
Items screen.

➤ Remove addItem() from ChecklistViewController.swift as you no longer need
this method.

Just to make sure, open the storyboard and double-check that the + button is no
longer connected to the addItem action. Bad things happen if buttons are connected
to methods that no longer exist…

(You can see this in the Connections inspector for the + button, under Sent Actions.
Nothing should be connected there. Only the modal segue under Triggered Segues
should be present.)

➤ Run the app and you should be able to add your own items to the list!

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 107

You can finally add new items to the to-do list

You can find the project files for the app up to this point under 04 - Add Item
Screen in the tutorial’s Source Code folder.

Weak
I still owe you an explanation about weak. Relationships between objects can be
weak or strong. You use weak relationships to avoid so-called ownership cycles.

When object A has a strong reference to object B, and at the same time object B
also has a strong reference back to A, then these two objects are involved in a
dangerous kind of romance: an ownership cycle.

Normally, an object is destroyed – or deallocated – when there are no more strong
references to it. But because A and B have strong references to each other, they’re
keeping each other alive.

The result is a potential memory leak where an object that ought to be destroyed
isn’t, and the memory for its data is never reclaimed. With enough such leaks, iOS
will run out of available memory and your app will crash. I told you it was
dangerous!

Due to the strong references between them, A owns B but also B owns A:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 108

To avoid ownership cycles you can make one of these references weak.

In the case of a view controller and its delegate, screen A usually has a strong
reference to screen B, but B only has a weak reference back to its delegate, A.

Because of the weak reference, B no longer owns A:

Now there is no ownership cycle.

Such cycles can occur in other situations too but they are most common with
delegates. Therefore, delegates are always made weak.

(There is another relationship type, unowned, that is similar to weak and can be used
for delegates too. The difference is that weak variables are allowed to become nil
again. You may forget this right now.)

@IBOutlets are usually also declared with the weak keyword. This isn’t done to avoid
an ownership cycle, but to make it clear that the view controller isn’t really the
owner of the views from the outlets.

In the course of these tutorials you’ll learn more about weak, strong, optionals, and
the relationships between objects. These are important concepts in Swift, but they
may take a while to make sense. Don’t lose any sleep over it!

Editing existing checklist items
Adding new items to the list is a great step forward for the app, but there are
usually three things an app needs to do with data:

1. adding new items (which you’ve tackled),

2. deleting items (you allow that with swipe-to-delete), and

3. editing existing items (uhh…).

The latter is useful for when you want to rename an item from your list. We all
make typos.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 109

You could make a completely new Edit Item screen but it would work mostly the
same as the Add Item screen. The only difference is that it doesn’t start out empty
but with an existing to-do item.

So let’s re-use the Add Item screen and make it capable of editing an existing
ChecklistItem object.

Editing a to-do item

When the user presses Done you won’t have to make a new ChecklistItem object,
instead you will simply update the text in the existing ChecklistItem.

You’ll also tell the delegate about these changes so that it can update the text label
of the corresponding table view cell.

Exercise: Which changes would you need to make to the Add Item screen to
enable it to edit existing items?

Answer:

1. The screen must be renamed to Edit Item.

2. You must be able to give it an existing ChecklistItem object.

3. You have to place the ChecklistItem’s text into the text field.

4. When the user presses Done, you should not add a new ChecklistItem object,
but update the existing one.

There is a bit of a user interface problem, though… How will the user actually open
the Edit Item screen? In many apps that is done by tapping on the item’s row but in
the Checklists app that already toggles the checkmark on or off.

To solve this problem, you’ll have to revise the UI a little.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 110

When a row is given two functions, the standard approach is to use a detail
disclosure button for the secondary task:

The detail disclosure button

Tapping the row itself will still perform the row’s main function, in this case toggling
the checkmark. But tapping the disclosure button will open the Edit Item screen.

Note: An alternative approach is taken by Apple’s Reminders app. There the
checkmark is on the left and tapping only this part of the row will toggle the
checkmark. Tapping anywhere else in the row will bring up the Edit screen for
that item.

There are also apps that can toggle the whole screen into “Edit mode” and
then let you change the text of an item inline. Which solution you choose
depends on what works best for your data.

➤ Go to the table view cell in the storyboard and in the Attributes inspector set
its Accessory to Detail Disclosure.

Instead of the checkmark you’ll now see a chevron (>) and a blue info button on the
right of the cell. This means you’ll have to place the checkmark somewhere else.

➤ Drag a new Label into the cell and place it on the left of the text label. Give it
the following attributes:

• Text: √ (you can type this with Alt/Option+V)

• Font: Helvetica Neue, Bold, size 22

• Tag: 1001

You’ve given this new label its own tag, so you can easily find it later.

If typing Option-V does not work for you, choose Edit → Emoji & Symbols from
the Xcode menu bar. Use the search bar to search for “check” – or whatever takes
your fancy. (Note that not all of these special symbols may actually work on your
iPhone.)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 111

The Emoji & Symbols palette

➤ Resize the text label so that it doesn’t overlap the checkmark or the disclosure
button. It should be about 215 points wide.

The design of the prototype cell now looks like this:

The new design of the prototype cell

➤ In ChecklistViewController.swift, change configureCheckmark(for:with:) to:

func configureCheckmark(for cell: UITableViewCell,
 with item: ChecklistItem) {
 let label = cell.viewWithTag(1001) as! UILabel

 if item.checked {
 label.text = "√"
 } else {
 label.text = ""
 }
}

Instead of setting the cell’s accessoryType property, this now changes the text in
the new label.

➤ Run the app and you’ll see that the checkmark has moved to the left. There is
also a blue detail disclosure button on the right. Tapping the row still toggles the
checkmark, but tapping the blue button doesn’t.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 112

The checkmarks are now on the other side of the cell

Next you’re going to make the detail disclosure button open the Add/Edit Item
screen. This is pretty simple because Interface Builder also allows you to make a
segue for a disclosure button.

➤ Open the storyboard. Select the table view cell and Ctrl-drag to the Navigation
Controller next door to make a segue. From the popup, choose Present Modally
from the Accessory Action section (not from Selection Segue):

Making a modal segue from the detail disclosure button

There are now two segues going from the Checklists screen to the navigation
controller. One is triggered by the + button, the other by the detail disclosure
button from the prototype cell.

Two arrows for two segues

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 113

For the app to make a distinction between these two segues, they must have
unique identifiers.

➤ Give this new segue the identifier EditItem (in the Attributes inspector).

If you run the app now, tapping the blue (i) button will also open the Add Item
screen. But the Cancel and Done buttons won’t work.

Exercise: Can you explain why not?

Answer: You haven’t set the delegate yet. Remember that you set the delegate in
prepare(for:sender:), but only for when the + button is tapped to perform the
“AddItem” segue. You haven’t done the same for this new “EditItem” segue.

Before you fix the delegate business, you shall first make the Add/Edit Item screen
capable of editing existing ChecklistItem objects.

➤ Add a new property for a ChecklistItem object below the other instance variables
in AddItemViewController.swift:

var itemToEdit: ChecklistItem?

This variable contains the existing ChecklistItem object that the user will be
editing. But when adding a new to-do item, itemToEdit will be nil. That is how the
view controller will make the distinction between adding and editing.

Because itemToEdit can be nil, it needs to be an optional. That explains the
question mark.

➤ Add the viewDidLoad() method to AddItemViewController.swift:

override func viewDidLoad() {
 super.viewDidLoad()

 if let item = itemToEdit {
 title = "Edit Item"
 textField.text = item.text
 }
}

Recall that viewDidLoad() is called by UIKit when the view controller is loaded from
the storyboard, but before it is shown on the screen. That gives you time to put the
user interface in order.

In editing mode, when itemToEdit is not nil, you change the title in the navigation
bar to “Edit Item”. You do this by changing the title property.

Each view controller has a number of built-in properties and this is one of them.
The navigation controller looks for the title property and automatically changes
the text in the navigation bar.

You also set the text in the text field to the value from the item’s text property.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 114

if let
You cannot use optionals like you would regular variables. For example, if
viewDidLoad() would have done the following,

 textField.text = itemToEdit.text

then Xcode would complain with the error message, “Value of optional type
ChecklistItem? not unwrapped”.

That’s because itemToEdit is the optional version of ChecklistItem.

In order to use it you first need to unwrap the optional. You do that with the
following special syntax:

if let temporaryConstant = optionalVariable {
 // temporaryConstant now contains the unwrapped value
 // of the optional variable
}

If the optional is not nil, then the code inside the if-statement is performed.

There are a few other ways to read the value of an optional, but using if let is the
safest: if the optional has no value – i.e. it is nil – then the code inside the if let
block is skipped over.

Do you find optionals weird and confusing? Take some comfort in the fact that
everyone else does too. This feature of Swift isn’t found in many other mainstream
languages and most developers do a double take when they first encounter it.

Despite being a little odd, optionals will prevent mistakes with “null pointer
dereferences” and help bulletproof your programs against crashes.

The AddItemViewController is now capable of recognizing when it needs to edit an
item. If the itemToEdit property is given a ChecklistItem object, then the screen
magically changes into the Edit Item screen.

But where do you fill up that itemToEdit property? In prepare-for-segue, of course!
That’s the ideal place for putting values into the properties of the new screen before
it becomes visible.

➤ Change prepare(for:sender:) in ChecklistViewController.swift to the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 115

following:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "AddItem" {
 . . .

 } else if segue.identifier == "EditItem" {
 let navigationController = segue.destination
 as! UINavigationController
 let controller = navigationController.topViewController
 as! AddItemViewController
 controller.delegate = self

 if let indexPath = tableView.indexPath(
 for: sender as! UITableViewCell) {
 controller.itemToEdit = items[indexPath.row]
 }
 }
}

As before, you get the navigation controller from the storyboard, and its embedded
AddItemViewController using the topViewController property.

You also set the view controller’s delegate property so you’re notified when the user
taps Cancel or Done. Nothing new there. This is the same as for the "AddItem"
segue.

This is the interesting new bit:

if let indexPath = tableView.indexPath(for: sender as! UITableViewCell){
 controller.itemToEdit = items[indexPath.row]
}

You’re in the prepare(for:sender:) method, which has a parameter named sender.
This parameter contains a reference to the control that triggered the segue, in this
case the table view cell whose disclosure button was tapped.

You use that UITableViewCell object to find the row number by looking up the
corresponding index-path using tableView.indexPath(for).

The return type of UITableView’s indexPath(for) method is IndexPath?, an optional,
meaning it can possibly return nil. That’s why you need to unwrap this optional
value with if let before you can use it.

Once you have the row number you can obtain the ChecklistItem object to edit,
and you assign this to AddItemViewController’s itemToEdit property.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 116

Sending data between view controllers
We’ve talked about screen B (the Add/Edit Item screen) passing data back to
screen A (the Checklists screen) through the use of delegates.

But here you’re passing a piece of data the other way around – from screen A to
screen B – namely, the ChecklistItem to edit.

Data transfer between view controllers works two ways:

1. From A to B. When screen A opens screen B, A can give B the data it needs.
You simply make a new instance variable in B’s view controller. Screen A then
puts an object into this property right before it makes screen B visible, usually
in prepare(for:sender:).

2. From B to A. To pass data back from B to A you use a delegate.

This illustration shows how screen A sends data to screen B by putting it into B’s
properties, and how screen B sends data back to the delegate:

I hope the flow between view controllers is starting to make sense now. You’re
going to do this sort of thing a few more times in this lesson, just to make sure you
get comfortable with it.

Making iOS apps is all about creating view controllers and sending messages
between them, so you want this to become second nature.

➤ With these steps done, you can now run the app. A tap on the + button opens

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 117

the Add Item screen as before. But tap the accessory button on an existing row and
the screen that opens is named Edit Item. It already contains the to-do item’s text:

Editing an item

One small problem: the Done button in the navigation bar is initially disabled. This
is because you originally set it to be disabled in the storyboard.

➤ Change viewDidLoad() in AddItemViewController.swift to fix this:

override func viewDidLoad() {
 super.viewDidLoad()

 if let item = itemToEdit {
 title = "Edit Item"
 textField.text = item.text
 doneBarButton.isEnabled = true // add this line
 }
}

You can simply always enable the Done button; when editing an existing item you
are guaranteed to pass in a text that is not empty.

The problems don’t end here, though. Run the app, tap a row to edit it, and press
Done. Instead of changing the text on the existing item, a brand new to-do item
with the new text is added to the list.

You didn’t write the code yet to update the data model, so the delegate always
thinks it needs to add a new row.

To solve this you add a new method to the delegate protocol.

➤ Add the following line to the protocol section in AddItemViewController.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 118

func addItemViewController(_ controller: AddItemViewController,
 didFinishEditing item: ChecklistItem)

The full protocol now looks like this:

protocol AddItemViewControllerDelegate: class {
func addItemViewControllerDidCancel(_ controller: AddItemViewController)
func addItemViewController(_ controller: AddItemViewController,
 didFinishAdding item: ChecklistItem)
func addItemViewController(_ controller: AddItemViewController,
 didFinishEditing item: ChecklistItem)
}

There is a method that is invoked when the user presses Cancel and two methods
for when the user presses Done.

After adding a new item you call didFinishAdding, but when editing an existing item
the new didFinishEditing method should now be called instead.

By using different methods the delegate (the ChecklistViewController) can make a
distinction between those two situations.

➤ In AddItemViewController.swift, change the done() method to:

@IBAction func done() {
 if let item = itemToEdit {
 item.text = textField.text!
 delegate?.addItemViewController(self, didFinishEditing: item)

 } else {
 let item = ChecklistItem()
 item.text = textField.text!
 item.checked = false
 delegate?.addItemViewController(self, didFinishAdding: item)
 }
}

First this checks whether the itemToEdit property contains an object. You should
recognize the if let syntax for unwrapping an optional.

If the optional is not nil, you put the text from the text field into the existing
ChecklistItem object and then call the new delegate method.

In the case that itemToEdit is nil, the user is adding a new item and you do the
stuff you did before (inside the else block).

➤ Try to build the app. It won’t work.

Xcode says “Build Failed” but there don’t seem to be any error messages in
AddItemViewController.swift. So what went wrong?

You can see all errors and warnings from Xcode in the Issue navigator:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 119

Xcode warns about incomplete implementation

The error is apparently in ChecklistViewController because it does not implement a
method from the protocol. That is not so strange because you just added the new
addItemViewController(didFinishEditing) method to the delegate protocol. But you
did not yet tell the view controller, who plays the role of the delegate, what to do
with it.

Note: The exact error message in my version of Xcode is “Method … has
different argument names from those required by protocol …”. That’s a bit of a
strange error message, wouldn’t you say? It doesn’t really describe what’s
wrong, just what Swift is confused about.

As you’re writing your own apps you’ll probably run into other strange or even
undecipherable Swift error messages. This should get better in time. The Swift
compiler is quite new at the job and still needs to work on its bedside manner.

➤ Add the following to ChecklistViewController.swift and the compiler error will
be history:

func addItemViewController(_ controller: AddItemViewController,
 didFinishEditing item: ChecklistItem) {
 if let index = items.index(of: item) {
 let indexPath = IndexPath(row: index, section: 0)
 if let cell = tableView.cellForRow(at: indexPath) {
 configureText(for: cell, with: item)
 }
 }
 dismiss(animated: true, completion: nil)
}

The ChecklistItem object already has the new text – it was put there by done() –
and the cell for it already exists in the table view. But you do need to update the
label in its table view cell.

So in this new method you look for the cell that corresponds to the ChecklistItem
object and, using the configureText(for:with:) method you wrote earlier, tell it to
refresh its label.

The first statement is the most interesting:

if let index = items.index(of: item) {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 120

In order to make the IndexPath that you need to retrieve the cell, you first need to
find the row number for this ChecklistItem. The row number is the same as the
index of the ChecklistItem in the items array, and you can use the index(of)
method to return that index.

Now, it won’t happen here, but in theory it’s possible that you use index(of) on an
object that is not actually in the array. To account for the possibility, index(of) does
not return a normal value, it returns an optional. If the object is not part of the
array, the optional is nil.

That’s why you need to use if let here to unwrap the return value of index(of).

➤ Try to build the app. Whoops, I guess I spoke too soon. Xcode has found another
reason to complain: “Cannot invoke index with an argument list of type blah blah
blah”. What does that mean?

This error happens because you can’t use index(of) on just any object, only on
objects that are “equatable”. index(of) must be able to somehow compare the
object that you’re looking for to the objects in the array, to see if they are equal.

Your ChecklistItem object does not have any functionality for that yet. There are a
few ways you can fix this, but we’ll go for the easy one.

➤ In ChecklistItem.swift, change the class line to:

class ChecklistItem: NSObject {

If you’ve programmed in Objective-C before, then NSObject will look familiar.

Almost all objects in Objective-C programs are based on NSObject. It’s the most
basic building block provided by iOS, and it offers a bunch of useful functionality
that standard Swift objects don’t have.

You can write many Swift programs without having to resort to NSObject, but in
times like these it comes in handy.

Building ChecklistItem on top of NSObject is enough to make it satisfy the
“equatable” requirement. Later in the tutorial, when you learn about saving the
checklist items, you would have had to make it an NSObject anyway, so this is a
good solution for this app.

➤ Run the app again and verify that editing items works now. Excellent!

Refactoring the code
At this point you have an app that can add new items and edit existing items using
the combined Add/Edit Item screen. Pretty sweet.

Given the recent changes, I don’t think the name AddItemViewController is
appropriate anymore as this screen is now used to both add and edit items.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 121

I propose you rename it to ItemDetailViewController.

Now, I’ve got good news and I’ve got bad news. Which one do you want to hear
first?

The good news is that Xcode has a special menu for refactoring source code,
including a tool to rename items. You can find this menu under Edit → Refactor.

The bad news is that in Xcode 8.0 this tool does not yet work for Swift sources, only
for Objective-C. So you can’t actually use it. Boohoo!

For us poor slobs without a working Refactor menu there’s only one option: manual
labor – you’ll have to make these changes by hand. Fortunately, Xcode has a very
handy search & replace function.

➤ Switch to the Search navigator (third tab in the navigator pane).

➤ Click on Find to change it to Replace.

➤ Change Ignoring Case to Matching Case.

➤ Type as the search text: AddItemViewController. Important: Make sure you
spell it exactly like this!

➤ Type in the replacement field: ItemDetailViewController.

The search & replace options

➤ Press return on your keyboard to start the search. This doesn’t replace anything
yet.

The search navigator shows the files containing matches for the search term. You
should see the two Swift source files and Main.storyboard in this list.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 122

The search results

➤ Click the Preview button. Xcode opens a screen with the files that are about to
be changed and the individual changes inside each file:

The preview pane shows the changes that Xcode is proposing

Have a look through these files just to make sure Xcode isn’t doing anything you’ll
regret later. It should only rename everything that says AddItemViewController to
ItemDetailViewController, also inside your storyboard.

➤ Click Replace and pray. If Xcode asks for confirmation, click Continue.

Xcode did not automatically rename the Swift file, so let’s do that now.

➤ In the project navigator, click AddItemViewController.swift to select it and
then click again (slowly) to make the name become editable.

Type the new name: ItemDetailViewController.swift

You’re not done yet with these refactorings. You still have to rename the methods
from the delegate protocol.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 123

➤ Switch to the Search navigator again

➤ Make sure you’re in Replace mode (click Find at the top to switch to Replace)

➤ Make sure you’re in Matching Case mode (if not, click Ignoring Case to switch)

➤ Type for the search text: addItemViewController with a lowercase “a”

➤ The as the replacement text: itemDetailViewController

➤ Press return to search through the entire project.

Using the Search navigator to find the methods to change

The search results should have only the method names from the delegate protocol,
in both ChecklistViewController.swift and ItemDetailViewController.swift.

➤ If you’re happy with the proposed changes, click Replace All.

I always repeat the search afterwards, ignoring case, to make sure I didn’t skip
anything by accident.

After these changes, the protocol in ItemDetailViewController.swift now has
these methods:

protocol ItemDetailViewControllerDelegate: class {
 func itemDetailViewControllerDidCancel(
 _ controller: ItemDetailViewController)

 func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishAdding item: ChecklistItem)

 func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishEditing item: ChecklistItem)
}

➤ Press ⌘+B to compile the app. If you made all the changes without any
mistakes, the app should build without errors.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 124

Note: Getting a “Build Failed” error? Then double-check your spelling.

Swift is case-sensitive, so it considers “itemDetailViewController” and
“ItemDetailViewController” to be two completely different words.

If the app crashes for you at this point, double-check that in the storyboard the
Custom Class of the view controller now says ItemDetailViewController (see the
Identity inspector pane). Xcode sometimes skips this step and then you have to
make this change manually.

Because you made quite a few changes all over the place, it’s a good idea to do a
clean just to make sure Xcode picks up all these changes and that there are no
more warnings or compiler errors. You don’t have to be paranoid about this, but it’s
good practice to clean house once in a while.

➤ From Xcode’s menu bar choose Product → Clean. When the clean is done
choose Product → Build (or simply press the Run button).

If there are no build issues, run the app again and test the various features just to
make sure everything still works! (If the build succeeds but Xcode still shows red
error icons in your source file, then close the project and open it again, or restart
Xcode. Restarting Xcode is the solution that Always Works™.)

You can find the project files for the app up to this point under 05 - Edit Items in
the tutorial’s Source Code folder.

Iterative development
If you think this approach to development we’ve taken in this tutorial is a little
messy, then you’re absolutely right.

You started out with one design but as you were developing you found out that
things didn’t work out so well in practice and that you had to refactor your
approach a few times to find a way that works.

Well, this is how software development goes in practice.

You first build a small part of your app and everything looks and works fine. Then
you add the next small part on top of that and suddenly everything breaks down.
The proper thing to do is to go back and restructure your entire approach so that
everything is hunky-dory again… Until the next change you need to make.

Software development is a constant process of refinement. In these tutorials I
didn’t want to just give you a perfect piece of code and explain how each part

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 125

works. That’s not how software development happens in the real world.

Instead, you’re working your way from zero to a full app, exactly the way a pro
developer would, including the mistakes and dead ends.

Isn’t it possible to create a design up-front – sometimes called a “software
architecture design” – that deals with all of these situations, like a blueprint but for
software?

I don’t believe in such designs. Sure, it’s always good to plan ahead. Before writing
this tutorial, I made a few quick sketches of how I imagined the app would turn out.
That was useful to envision the amount of work, but as usual some of my
assumptions and guesses turned out to be wrong and the design stopped being
useful about halfway in. And this is only a simple app!

That doesn’t mean you shouldn’t spend any time on planning and design, just not
too much. ;-)

Simply start somewhere and keep going until you get stuck, then backtrack and
improve on your approach. This is called iterative development and it’s usually
faster and provides better results than meticulous up-front planning.

Saving and loading the checklist items
Any new to-do items that you add to the list cease to exist when you terminate the
app (by pressing the Stop button in Xcode, for example). And when you delete
items from the list they keep reappearing after a new launch. That’s not how a real
app should behave, of course.

Thanks to the multitasking nature of iOS, an app stays in memory when you close it
and go back to the home screen or switch to another app. The app goes into a
suspended state where it does absolutely nothing but will still hang on to its data.

During normal usage, users will never truly terminate the app, just suspend it.
However, the app can still be terminated when the iPhone runs out of available
working memory, as iOS will terminate any suspended apps in order to free up
memory when necessary. And if they really want to, users can kill apps by hand or
reset their entire device.

Just keeping the list of items in memory is not good enough because there is no
guarantee that the app will remain in memory forever, whether active or
suspended.

Instead, you will need to persist this data in a file on the iPhone’s long-term flash

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 126

storage. This is no different than saving a file from your word processor on your
desktop computer except that iPhone apps should take care of this saving
automatically.

The user shouldn’t have to press a Save button just to make sure unsaved data is
safely placed in long-term storage.

Apps need to persist data just in case the app is terminated

In this section you will:

• Determine where in the file system you can place the file that will remember the
to-do list items.

• Save the to-do items to that file whenever the user changes something: adds a
new item, toggles a checkmark, deletes an item, et cetera.

• Load the to-do items from that file when the app starts up again after it was
terminated.

Let’s get crackin’!

The documents directory
iOS apps live in a sheltered environment, also known as the sandbox. Each app
has its own directory for storing files but cannot access the directories or files of
any other apps.

This is a security measure, designed to prevent malicious software such as viruses
from doing any damage. If an app can only change its own files, it cannot break
any other part of the system.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 127

Your apps can store files in the so-called “Documents” directory in the app’s
sandbox.

The contents of the Documents directory are backed up when the user syncs their
device with iTunes or iCloud.

When you release a new version of your app and users install the update, the
Documents folder is left untouched. Any data the app has saved into this folder
stays there even if the app is updated.

In other words, the Documents folder is the perfect place for storing your user’s
data files.

Let’s look at how this works.

➤ Add the following methods to ChecklistViewController.swift:

func documentsDirectory() -> URL {
 let paths = FileManager.default.urls(for: .documentDirectory,
 in: .userDomainMask)
 return paths[0]
}

func dataFilePath() -> URL {
 return documentsDirectory().appendingPathComponent("Checklists.plist")
}

The documentsDirectory() method is something I’ve added for convenience. There
is no standard method you can call to get the full path to the Documents folder, so I
rolled my own.

The dataFilePath() method uses documentsDirectory() to construct the full path to
the file that will store the checklist items. This file is named Checklists.plist and it
lives inside the Documents directory.

Notice that both methods return a URL object. iOS uses URLs to refer to files on its
filesystem. Where websites use http:// or https:// URLs, to find a file you use a
file:// URL.

Note: Double check to make sure your code says .documentDirectory and
not .documentationDirectory. Xcode’s autocomplete can easily trip you up
here!

➤ Still in ChecklistViewController.swift, add the following two print statements
to the bottom of init?(coder), below the call to super.init():

required init?(coder aDecoder: NSCoder) {
 . . .
 super.init(coder: aDecoder)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 128

 print("Documents folder is \(documentsDirectory())")
 print("Data file path is \(dataFilePath())")
}

➤ Run the app. Xcode’s debug area will now show you where your app’s Documents
directory is actually located.

If I run the app from the Simulator, on my system it says:

Documents folder is file:///Users/matthijs/Library/Developer/
CoreSimulator/Devices/66422991-21E3-4394-8DCE-0584865EA854/data/
Containers/Data/Application/96643C0B-2772-48D1-AD93-DBC2ACD4B779/
Documents/

Data file path is file:///Users/matthijs/Library/Developer/CoreSimulator/
Devices/66422991-21E3-4394-8DCE-0584865EA854/data/Containers/Data/
Application/96643C0B-2772-48D1-AD93-DBC2ACD4B779/Documents/
Checklists.plist

If you run it on your iPhone, the path will look somewhat different. Here’s what
mine says (this is on an iPod touch):

Documents folder is file:///var/mobile/Applications/
FDD50B54-9383-4DCC-9C19-C3DEBC1A96FE/Documents

Data file path is file:///var/mobile/Applications/
FDD50B54-9383-4DCC-9C19-C3DEBC1A96FE/Documents/Checklists.plist

The name of the folder that contains the app’s Documents folder is
“96643C0B-2772-48D1-AD93-DBC2ACD4B779” (on the Simulator) and
“FDD50B54-9383-4DCC-9C19-C3DEBC1A96FE” (on the device). There will be a quiz
at the end of this section to see if you were able to memorize these folder names
(I’m joking!).

The folder name is a random ID that Xcode picks when it installs the app on the
Simulator or the device. Anything inside that folder is part of the app’s sandbox.

For the rest of this section, run the app on the Simulator instead of a device. That
makes it easier to look at the files you’ll be writing into the Documents folder.
Because the Simulator stores the app’s files in a regular folder on your Mac, you
can easily examine them from Finder.

➤ Open a new Finder window by clicking on the Desktop and typing ⌘+N. Then
press ⌘+Shift+G and paste the full path to the Documents folder in the dialog.
(Don’t include the file:// bit. The path starts with /Users/yourname/…)

The Finder window will go to that folder. Keep this window open so you can see that
the Checklists.plist file is actually being created when you get to that part.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 129

The app’s directory structure in the Simulator

Tip: If you want to navigate to the Simulator’s app directories by hand, then
you should know that the Library folder is hidden from your home directory.
Hold down the Alt/Option key and click on Finder’s Go menu. This will reveal
the Library folder.

You can see several things inside the app’s directory:

• The Documents directory where the app will put its data files. Currently the
Documents folder is still empty.

• The Library directory has cache files and preferences files. The contents of this
directory are managed by the operating system.

• The tmp directory is for temporary files. Sometimes apps need to create files for
temporary usage. You don’t want these to clutter up your Documents folder, so
tmp is a good place to put them. iOS will clear out this folder from time to time.

It is also possible to look inside the Documents directory of apps on your device.

➤ On your iPhone or iPod, go to Settings → General → Usage. Under Storage &
iCloud Usage tap Manage Storage and then the name of an app.

You’ll now see the contents of its Documents folder:

Viewing the Documents folder on the device

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 130

Saving the checklist items
In this section you are going to write code that saves the list of to-do items to the
Checklists.plist file when the user adds a new item or edits an existing item. Once
you are able to save the items you’ll add the code that is required to load this list
again when the app starts up.

So what is a .plist file?

You’ve already seen a file named Info.plist in the Bull’s Eye lesson. All apps have
one, including the Checklists app (see the project navigator). Info.plist contains
several configuration options that give iOS additional information about the app,
such as what name to display under the app’s icon on the home screen.

“plist” stands for Property List and is an XML file format that stores structured data,
usually in the form of a list of settings and their values. Property List files are very
common in iOS. They are suitable for many types of data storage, and best of all
they are simple to use. What’s not to like!

To save the checklist items you’ll use the NSCoder system, which lets objects store
their data in a structured file format.

You actually don’t have to care much about that format. In this case it happens to
be a .plist file but you’re not directly going to mess with that file. All you care about
is that the data gets stored in some kind of file in the app’s Documents folder, but
you’ll leave the technical details for NSCoder to deal with.

You have already used NSCoder behind the scenes because that’s exactly how
storyboards work. When you add a view controller to a storyboard, Xcode uses the
NSCoder system to write this object to a file (encoding). Then when your application
starts up, it uses NSCoder again to read the objects from the storyboard file
(decoding).

The process of converting objects to files and back again is also known as
serialization. It’s a big topic in software engineering.

I like to think of this whole process as freezing objects. You take a living object and
freeze it so that it is suspended in time. You store that frozen object into a file on
the iPhone’s flash drive where it will spend some time in cryostasis. Later you can
read that file into memory and defrost the object to bring it back to life again.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 131

The process of freezing (saving) and unfreezing (loading) objects

➤ Add the following method to ChecklistViewController.swift:

func saveChecklistItems() {
 let data = NSMutableData()
 let archiver = NSKeyedArchiver(forWritingWith: data)
 archiver.encode(items, forKey: "ChecklistItems")
 archiver.finishEncoding()
 data.write(to: dataFilePath(), atomically: true)
}

This method takes the contents of the items array and in two steps converts it to a
block of binary data and then writes this data to a file:

1. NSKeyedArchiver, which is a form of NSCoder that creates plist files, encodes the
array and all the ChecklistItems in it into some sort of binary data format that
can be written to a file.

2. That data is placed in an NSMutableData object, which will write itself to the file
specified by dataFilePath().

It’s not really important that you understand how NSKeyedArchiver works internally.
The format that it stores the data in isn’t of great significance. All you care about is
that it allows you to put your objects into a file and read them back later.

You have to call this new saveChecklistItems() method whenever the list of items
is modified.

Exercise: Where in the source code would you call this method?

Answer: Look at where the items array is being changed. This happens inside the
ItemDetailViewControllerDelegate methods. That’s where the party’s at!

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 132

➤ Add a call to saveChecklistItems() to the end of these methods inside
ChecklistViewController.swift:

func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishAdding item: ChecklistItem) {
 . . .
 saveChecklistItems()
}

func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishEditing item: ChecklistItem) {
 . . .
 saveChecklistItems()
}

➤ Let’s not forget the swipe-to-delete function:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 . . .
 saveChecklistItems()
}

➤ And toggling the checkmark on a row on or off:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 . . .
 saveChecklistItems()
}

Just calling NSKeyedArchiver on the items array is not enough. If you were to run
the app now and do something that results in a save, such as tapping a row to flip
the checkmark, the app crashes with the following error (try it out):

*** Terminating app due to uncaught exception
'NSInvalidArgumentException', reason: '-[Checklists.ChecklistItem
encodeWithCoder:]: unrecognized selector sent to instance 0x7f8d6af3aac0

A selector is a term Objective-C uses for the name of a method, so this warning
means the app tried to call a method named encodeWithCoder() that doesn’t
actually exist anywhere. (Swift doesn’t really use the term selector, but because the
iOS frameworks are written in Objective-C you’ll still see it being used in the
documentation and in error messages.)

The Xcode window has switched to the debugger and points out which line caused
the crash, more or less:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 133

Xcode isn’t being very helpful here

The debugger points at the AppDelegate.swift source file as the cause for the crash,
but that’s a little misleading. If this happened to you too, then you need to enable
the Exception Breakpoint.

➤ Switch to the Breakpoint navigator and click the + button at the bottom:

Adding the Exception Breakpoint

Now try running the app again.

Note: If the app now appears to “crash” right away, then somewhere deep inside
UIKit an exception got triggered. This has nothing to do with your code. The
exception breakpoint catches any exception, even if it is not fatal or it happens in
the system frameworks. In that case, press the following button a few times until
the app properly appears:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 134

This is the “Continue program execution” button and you can find it near the
bottom of the Xcode window.

➤ Tap a row to toggle the checkmark. This time Xcode points at the correct line,
inside saveChecklistItems():

The app crashes on the code you just added

This line is the culprit:

archiver.encode(items, forKey: "ChecklistItems")

Apparently the app crashes when trying to encode the items array, or rather the
things inside the array.

The “unrecognized selector” crash message means you forgot to implement a
certain method. In this case, the missing method appears to be encode(with) on
the ChecklistItem object – that’s what the crash message says.

Here is what happened: You asked NSKeyedArchiver to encode the array of items, so
it not only has to encode the array itself but also each ChecklistItem object inside
that array.

NSKeyedArchiver knows how to encode an Array object but it doesn’t know anything
about ChecklistItem. So you have to help it out a bit.

➤ Add NSCoding to the class line in ChecklistItem.swift:

class ChecklistItem: NSObject, NSCoding {

You’re telling the compiler that ChecklistItem will conform to a new protocol,
NSCoding.

The names get confusing: If you want to use the NSCoder system on an object, the
object needs to implement the NSCoding protocol.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 135

You’ve seen that a protocol is just a list of method names. Making an object
conform to the protocol means the object should add implementations for the
methods from that protocol.

The methods from the NSCoding protocol are:

• func encode(with aCoder: NSCoder)

• init?(coder aDecoder: NSCoder)

Only two methods, that can’t be too bad! The first one is a regular method and it is
used for saving – or encoding – the objects.

The other is a special init method. Recall that init methods are used during the
creation of new objects. This one is for creating objects by loading – or decoding –
them from a plist file.

➤ Add the following to ChecklistItem.swift:

func encode(with aCoder: NSCoder) {
 aCoder.encode(text, forKey: "Text")
 aCoder.encode(checked, forKey: "Checked")
}

This is the missing method from the unrecognized selector error.

When NSKeyedArchiver tries to encode the ChecklistItem object it will send the
checklist item an encode(with) message.

Here you simply say: a ChecklistItem should save an object named “Text” that
contains the value of the instance variable text, and an object named “Checked”
that contains the value of the variable checked.

Just these two lines are enough to make the coder system work, at least for saving
the to-do items.

Before you can build and run the app, you need to add some more code. Swift
requires that you always implement all the required methods from a protocol and
NSCoding has two methods, one for saving and one for loading.

➤ Add the second method to ChecklistItem.swift:

required init?(coder aDecoder: NSCoder) {
 super.init()
}

You’re not going to use this right away, but it’s needed to make the app compile
without errors.

Note: This should look familiar. You’ve already used init?(coder) before, to
initialize the ChecklistViewController. That’s because storyboards also use the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 136

NSCoding system to load objects into the app.

Now, init methods are special in Swift. Because you just added init?(coder) you
also need to add an init() method that takes no parameters. Without this, the app
won’t build. You’ll learn more about why soon.

➤ Also add this method to ChecklistItem.swift:

override init() {
 super.init()
}

It doesn’t do anything useful, but it keeps the compiler happy.

➤ Run the app again and tap a row to toggle a checkmark. The app didn’t crash?
Good!

➤ Go to the Finder window that has the app’s Documents directory open:

The Documents directory now contains a Checklists.plist file

There is now a Checklists.plist file in the Documents folder, which contains the
items from the list.

You can look inside this file if you want, but the contents won’t make much sense.
Even though it is XML, this file wasn’t intended to be read by humans, only by the
NSKeyedArchiver system.

If you’re having trouble viewing the XML it may be because the plist file isn’t stored
as text but as a binary format. Some text editors support this file format and can
read it as if it were text (TextWrangler is a good one and is a free download on the
Mac App Store).

You can also use Finder’s Quick Look feature to view the file. Simply select the file
in Finder and press the space bar.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 137

Naturally, you can also open the plist file with Xcode.

➤ Right-click the Checklists.plist file and choose Open With → Xcode.

Checklist.plist in Xcode

It still won’t make much sense but it’s fun to look at anyway.

Expand some of the rows and you’ll see this file was made by NSKeyedArchiver and
that the names of the ChecklistItems are also in there. But exactly how all these
data items fit together, I have no idea.

"NS" objects
Objects whose name start the “NS” prefix means are provided by the Foundation
framework. NS stands for NextStep, the operating system from the 1990’s that
later became Mac OS X and also forms the basis of iOS.

If you are curious about exactly how objects such as NSKeyedArchiver and NSCoding
work, you can Alt/Option-click any item in your source code to bring up a popup
with a brief description:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 138

I use this all the time to remind myself of how to use framework objects and their
methods.

It’s good to have a general idea of what objects are available in the frameworks,
but no one can remember all the specifics. So get into the habit of looking up the
documentation for any new objects and methods that you encounter. It’ll make you
learn the iOS frameworks much quicker!

Loading the file
Saving is all well and good but pretty useless by itself, so let’s also implement the
loading of the Checklists.plist file. It’s very straightforward – you’re basically going
to do the same thing you just did but in reverse.

You’ve already added an empty init?(coder) to ChecklistItem.swift. This is the
method for unfreezing the objects from the file.

➤ Make the following changes to init?(coder):

required init?(coder aDecoder: NSCoder) {
 text = aDecoder.decodeObject(forKey: "Text") as! String
 checked = aDecoder.decodeBool(forKey: "Checked")
 super.init()
}

Inside init?(coder) you do the opposite from encode(with). You take objects from
the NSCoder’s decoder object and put their values inside your own properties. That’s
all it takes!

What you stored earlier under the “Text” key now goes back into the text instance
variable. Likewise for checked and the boolean “Checked” value. Pay close attention:
for text you use decodeObject() but for checked you need to use decodeBool().

Initializers
Methods named “init” are special in Swift. They are only used when you’re creating
new objects, to make those new objects ready for use.

Think of it as having bought new clothes. The clothes are in your possession (the
memory for the object is allocated) but they’re still in the bag. You need to go
change and put the new clothes on (initialization) before you’re ready to go out and

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 139

party.

When you write the following to create a new object,

let item = ChecklistItem()

Swift first allocates a chunk of memory big enough to hold the new object and then
calls ChecklistItem’s init() method with no parameters.

Loading the Checklists.plist file will be done by an NSKeyedUnarchiver object (you’ll
add this code in a minute). That unarchiver does the following behind the scenes to
create the ChecklistItem objects:

let item = ChecklistItem(coder: someDecoderObject)

This also allocates memory for the new ChecklistItem but it calls init?(coder)
instead of the regular init().

It is pretty common for objects to have more than one init method. Which one is
used depends on the circumstances.

You use init() for creating ChecklistItem objects when the user presses the +
button, and you use init?(coder) to restore ChecklistItems that were saved to
disk.

The implementations of these init methods, whether they’re just called init() or
init?(coder) or something else, always follow the same series of steps. When you
write your own init methods, you need to stick to those steps as well.

This is the standard way to write an init method:

init() {
 // Put values into your instance variables and constants.

 super.init()

 // Other initialization code, such as calling methods, goes here.
}

Note that unlike other methods, init does not have the func keyword.

Sometimes you’ll see it written as override init or required init?. That is
necessary when you’re adding the init method to an object that is a subclass of
some other object. Much more about that later.

The question mark is for when init? can potentially fail and return a nil value
instead of a real object. You can imagine that decoding an object can fail if not
enough information is present in the plist file.

Inside the init method, you first need to make sure that all your instance variables
and constants have a value. Recall that in Swift all variables must always have a
value, except for optionals.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 140

When you declare an instance variable you can give it an initial value, like so:

var checked = false

It’s also possible to write just the variable name and its type, but not give the
variable a value yet:

var checked: Bool

In that case, you have to give this variable a value inside your init method:

init() {
 checked = false
 super.init()
}

You must use either one of these approaches; if you don’t give the variable a value
at all, Swift considers this an error. The only exception is optionals, they do not
need to have a value (in which case they are nil).

Once you’ve given all your instance variables and constants values, you call
super.init() to initialize this object’s superclass. If you haven’t done any object-
oriented programming at all, you may not know what a superclass is. That’s fine;
we’ll completely ignore this topic until the next tutorial.

Just remember that sometimes objects need to send messages to something called
super and if you forget to do this, bad things are likely to happen.

After calling super.init(), you can do additional initialization, such as calling the
object’s own methods. You’re not allowed to do that before the call to super.init()
because Swift has no guarantee that your object’s variables all have proper values
until then.

You don’t always need to provide an init method. If your init method doesn’t need
to do anything – if there are no instance variables to fill in – then you can leave it
out completely and the compiler will provide one for you.

When you first made ChecklistItem, it didn’t have an init() method either. But
now that you’ve added init?(coder) you also have to provide an init() that
doesn’t take any parameters.

Swift’s rules for initializers can be a bit complicated, but fortunately the compiler
will remind you when you forget to provide an init method.

The implementation of ChecklistItem is now complete. It can bring back to life the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 141

objects that were serialized (frozen) into the plist file. But you still have to write the
code that will actually load this plist. That happens in ChecklistViewController.

A table view controller, like many objects, has more than one init method. There is:

• init?(coder) for view controllers that are automatically loaded from a storyboard

• init(nibName, bundle) for view controllers that you manually want to load from a
nib (a nib is like a storyboard but only contains a single view controller)

• init(style) for table view controllers that you want to create without using a
storyboard or nib

This view controller comes from a storyboard, so you’ll put the plist loading code
into its init?(coder). Yup, that’s actually the same kind of method you’ve just
implemented in ChecklistItem.

The UITableViewController object gets loaded and unfrozen from the storyboard
file using the same NSCoder system that you used for your own files. If it’s good
enough for storyboards then it’s certainly good enough for us!

➤ In ChecklistViewController.swift, replace init?(coder) with:

required init?(coder aDecoder: NSCoder) {
 items = [ChecklistItem]()
 super.init(coder: aDecoder)
 loadChecklistItems()
}

This follows the pattern for init methods:

1. First you make sure the instance variable items has a proper value (a new
array).

2. Then you call super’s version of init(). This time you call super.init(coder) to
ensure the rest of the view controller is properly unfrozen from the storyboard.

3. Finally, you can call other methods. Here you call a new method to do the real
work of loading the plist file.

Note: Did you notice that init?(coder) has parameters with different external
and internal labels? The label coder is part of the method name, but inside the
method this parameter is called aDecoder.

When you call super.init, you use the label coder to refer to the parameter of
super’s init method, and the object from aDecoder as that parameter’s value.

➤ Also add the loadChecklistItems() method:

func loadChecklistItems() {
 // 1

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 142

 let path = dataFilePath()
 // 2
 if let data = try? Data(contentsOf: path) {
 // 3
 let unarchiver = NSKeyedUnarchiver(forReadingWith: data)
 items = unarchiver.decodeObject(forKey: "ChecklistItems")
 as! [ChecklistItem]
 unarchiver.finishDecoding()
 }
}

Let’s go through this step-by-step:

1. First you put the results of dataFilePath() in a temporary constant named path.

2. Try to load the contents of Checklists.plist into a new Data object. The try?
command attempts to create the Data object, but returns nil if it fails. That’s
why you put it in an if let statement.

Why would it fail? If there is no Checklists.plist then there are obviously no
ChecklistItem objects to load. This is what happens when the app is started up
for the very first time. In that case, you’ll skip the rest of this method.

3. When the app does find a Checklists.plist file, you’ll load the entire array and its
contents from the file. This is essentially the reverse of saveChecklistItems().

You create an NSKeyedUnarchiver object (note: this is an unarchiver) and ask it
to decode that data into the items array. This populates the array with exact
copies of the ChecklistItem objects that were frozen into this file.

Note: Double-check that both methods loadChecklistItems() and
saveChecklistItems() use the same key name "ChecklistItems" for encoding
and decoding the array. If you make a typo here, then the app won’t work as
expected.

Normally Xcode is very good at pointing out typos but it’s not smart enough to
realize that the key name in the load and save methods must be the same.
That’s up to you, the human.

➤ Run the app and make some changes to the to-do items. Press Stop to terminate
the app. Start it again and notice that your changes are still there.

➤ Stop the app again. Go to the Finder window with the Documents folder and
remove the Checklists.plist file. Run the app once more. You should now have an
empty screen.

➤ Add an item and notice that the Checklists.plist file re-appears.

Awesome! You’ve written an app that not only lets you add and edit data, but that
also persists the data between sessions. These techniques form the basis of many,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 143

many apps.

Being able to use a navigation controller, show modal edit screens, and pass data
around through delegates are essential iOS development skills.

You can find the project files for the app up to this point under 06 - Saving and
Loading in the tutorial’s Source Code folder.

Using FileMerge to compare files
You can compare your own work with my version of the app using the FileMerge
tool. Open this tool from the Xcode menu bar, under Xcode → Open Developer
Tool → FileMerge:

You give FileMerge two files or two folders to compare:

After working hard for a few seconds or so, FileMerge tells you what is different:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 144

Double-click on a filename from the list to view the differences between the two
files:

FileMerge is a wonderful tool for spotting the differences between two files or even
entire folders. I use it all the time!

If something from the tutorials doesn’t work as it should, then do a “diff” – that’s
what you’re supposed to call it – between your own files and the ones from the
Source Code folder to see if you can find any anomalies.

This is a good time to take a break, put your feet up, and daydream about all the
cool apps you’ll soon be writing.

It’s also smart to go back and repeat those parts you’re still a bit fuzzy about. Don’t
rush through these tutorials – there are no prizes for finishing first. Rather than
going fast, take your time to truly understand what you’ve been doing.

As always, feel free to change the app and experiment. Breaking things is allowed –
even encouraged – here at iOS Apprentice Academy!

Just to make sure you truly get everything you’ve done so far, next up you’ll expand
the app with new features that more or less repeat what you just did.

But I’ll also throw in a few twists to keep it interesting…

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 145

Multiple checklists
The app is named Checklists for a reason: it allows you to keep more than one list
of to-do items. So far the app has only supported a single list but now you’ll give it
the capability to handle multiple checklists.

The steps for this section are:

• Add a new screen that shows all the checklists.

• Create a screen that lets users add/edit checklists.

• Show the to-do items that belong to a particular checklist when you tap the
name of that list.

• Save all the checklists to a file and load them in again.

Two new screens means two new view controllers:

1. AllListsViewController shows all the user’s lists, and

2. ListDetailViewController allows adding a new list and editing the name and
icon of an existing list.

You will first add the AllListsViewController. This becomes the new main screen of
the app.

When you’re done this is what it will look like:

The new main screen of the app

This screen is very similar to what you created before. It’s a table view controller
that shows a list of Checklist objects (not ChecklistItem objects).

From now on, I will refer to this screen as the “All Lists” screen and to the screen
that shows the to-do items from a single checklist as the “Checklist” screen.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 146

➤ Right-click the Checklists group in the project navigator and choose New File.
Choose the Cocoa Touch Class template (under iOS, Source).

In the next step, choose the following options:

• Class: AllListsViewController

• Subclass of: UITableViewController

• Also create XIB file: Uncheck this

• Language: Swift

Choosing the options for the new view controller

Note: Make sure the “Subclass of” field is set to UITableViewController, not just
“UIViewController”. Also be careful that Xcode didn’t rename what you typed into
Class to “AllListsTableViewController” with the extra word “Table”. It can be sneaky
like that…

➤ Press Next and then Create to finish.

The Xcode template for table view controller objects puts a lot of stuff in this new
file that you don’t need. The template assumes you’ll fill in this placeholder code
before you run the app again. So let’s clean that up first.

You’ll also put some fake data in the table view just to get it up and running. As you
know by now, I always like to take as small a step as possible and then run the app
to see if it’s working. Once everything works, you can move forward and put in the
real data.

➤ In AllListsViewController.swift, remove the numberOfSections(in) method.
Without it, there will always be a single section in the table view.

➤ Change the tableView(numberOfRowsInSection) method to:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 3
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 147

➤ Implement the tableView(cellForRowAt) method to put some text into the cells,
just so there is something to see.

Note that the template already contains a commented-out version of this method.
You can uncomment it by removing the /* and */ surrounding the method, and
make your changes there.

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = makeCell(for: tableView)
 cell.textLabel!.text = "List \(indexPath.row)"
 return cell
}

In ChecklistViewController the table view used prototype cells that you designed
in Interface Builder. Just for the fun of it, in AllListsViewController you are taking
a different approach where you’ll create the cells in code instead.

➤ That requires you to add the following helper method:

func makeCell(for tableView: UITableView) -> UITableViewCell {
 let cellIdentifier = "Cell"
 if let cell =
 tableView.dequeueReusableCell(withIdentifier: cellIdentifier) {
 return cell
 } else {
 return UITableViewCell(style: .default,
 reuseIdentifier: cellIdentifier)
 }
}

Later on I’ll explain in more detail how this works, but for now recognize that you’re
using dequeueReusableCell(withIdentifier) here too. If it returns nil, there is no
cell that can be recycled and you construct a new one with UITableViewCell(style,
reuseIdentifier).

The reason you put this logic into a separate method is that it keeps the code in
tableView(cellForRowAt) simple and clean. I find it more readable that way.

➤ Remove all the commented-out cruft from AllListsViewController.swift. Xcode
puts it there to be helpful, but it also makes a mess of things.

The final step is to add this new view controller to the storyboard.

➤ Open the storyboard and drag a new Table View Controller onto the canvas.
Put it somewhere near the first navigation controller.

➤ Ctrl-drag from the very first navigation controller to this new table view
controller:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 148

Ctrl-drag from the navigation controller to the new table view controller

From the popup menu choose Relationship Segue - root view controller:

Relationships are also segues

This will break the connection that existed between the navigation controller and
the ChecklistViewController so that “Checklists” is no longer the app’s main
screen.

➤ Select the new table view controller and set its Class in the Identity inspector
to AllListsViewController.

➤ Double-click the new view controller’s navigation bar and change its title to
Checklists.

This makes Xcode rename the view controller in the outline pane from All Lists View
Controller to just Checklists, which is a bit confusing because there’s a Checklists
view controller already. You’ll fix that in a minute.

You may want to reorganize your storyboard at this point to make everything look
neat again. The new table view controller goes in between the other scenes.

As I mentioned, you’re not going to use prototype cells for this table view. It would
be perfectly fine if you did, and as an exercise you could rewrite the code to use
prototype cells later, but I want to show you another way of making table view

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 149

cells.

➤ Delete the empty prototype cell from the All Lists View Controller. (Simply select
the Table View Cell and press delete on your keyboard.)

➤ Ctrl-drag from the yellow circle icon at the top of All Lists View Controller into
the Checklist View Controller and create a Show segue.

Ctrl-dragging from the All Lists scene to the Checklist scene

This adds a “push” transition from the All Lists screen to the Checklist screen. It
also puts the navigation bar back on the Checklist scene (the one on the right).

➤ Double-click the navigation bar to change its title to (Name of the Checklist).
This is just placeholder text. It helps tell the view controllers apart in the outline
pane.

Note: The outline pane doesn’t show the name of the view controller object
but the text from the navigation item. Very confusing, Xcode!

When I refer to the All Lists View Controller, it’s the plural “Checklists Scene” in
the outline pane.

The Checklist View Controller that shows a single list of to-do items is now
found under “(Name of the Checklist) Scene”.

Note that the new segue isn’t attached to any button or table view cell.

There is nothing on the All Lists screen that you can tap or otherwise interact with
in order to trigger this segue. That means you have to perform it programmatically.

➤ Click on the new segue to select it, go to the Attributes inspector and give it
the identifier ShowChecklist.

The segue Kind should be Show (e.g. Push) because you’re pushing the Checklist
View Controller onto the navigation stack when performing this segue.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 150

➤ In AllListsViewController.swift, add the tableView(didSelectRowAt) method:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 performSegue(withIdentifier: "ShowChecklist", sender: nil)
}

Recall that this table view delegate method is invoked when you tap a row.

Previously, a tap on a row would automatically perform the segue because you had
hooked up the segue to the prototype cell. However, the table view for this screen
isn’t using prototype cells and therefore you have to perform the segue manually.

That’s simple enough: just call performSegue(withIdentifier, sender) with the
name of the segue and things will start moving.

➤ Run the app. It now looks like this:

The first version of the All Lists screen (left). Tapping a row opens the Checklist screen
(right).

Tap a row and the familiar ChecklistViewController slides into the screen.

You can tap the “Back” button in the top-left to go back to the main list. Now you’re
truly using the power of the navigation controller!

Putting lists into the All Lists screen
You’re going to duplicate most of the functionality from the Checklist View
Controller for this new All Lists screen.

There will be a + button at the top that lets users add new checklists, they can do
swipe-to-delete, and they can tap the disclosure button to edit the name of the
checklist.

Of course, you’ll also save the array of Checklist objects to the Checklists.plist file.

Because you’ve already seen how this works, we’ll go through the steps a bit
quicker this time.

You begin by creating a data model object that represents a checklist.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 151

➤ Add a new file to the project based on the Cocoa Touch Class template. Name
it Checklist and make it a subclass of NSObject.

This adds the file Checklist.swift to the project.

Just like ChecklistItem, you’re building Checklist on top of NSObject. This is a
requirement for using the NSCoder system to load and save these objects.

➤ Give Checklist.swift a name property:

import UIKit

class Checklist: NSObject {
 var name = ""
}

Next, you’ll give AllListsViewController an array that will store these new
Checklist objects.

➤ Add a new instance variable to AllListsViewController.swift:

var lists: [Checklist]

This is an array that will hold the Checklist objects.

Note: You can also write the above as follows:
var lists: Array<Checklist>

The version with the square brackets is what’s known as syntactic sugar for
the complete notation, which is Array<type of the objects to put in the array>.

You will see both forms used in Swift programs and they do exactly the same
thing. Because arrays are used a lot, the designers of Swift included the handy
shorthand with the square brackets.

As a first step you will fill this new array with test data, which you’ll do from the
init?(coder) method. Remember that UIKit automatically invokes this method as it
loads the view controller from the storyboard.

In AllListsViewController.swift you could add the following init?(coder) method
(don’t actually add it just yet, just read along with the description):

required init?(coder aDecoder: NSCoder) {
 // 1
 lists = [Checklist]()

 // 2
 super.init(coder: aDecoder)

 // 3
 var list = Checklist()

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 152

 list.name = "Birthdays"
 lists.append(list)

 // 4
 list = Checklist()
 list.name = "Groceries"
 lists.append(list)

 list = Checklist()
 list.name = "Cool Apps"
 lists.append(list)

 list = Checklist()
 list.name = "To Do"
 lists.append(list)
}

You’ve seen something very much like it a while ago when you added the fake test
data to ChecklistViewController. Here is what it does step-by-step:

1. Give the lists variable a value. You can also write this as lists =
Array<Checklist>() – that does the exact same thing. I just like the square
brackets better.

2. Call super’s version of init?(coder). Without this, the view controller won’t be
properly loaded from the storyboard. But don’t worry too much about forgetting
to call super; if you don’t, Xcode gives an error message.

3. Create a new Checklist object, give it a name, and add it to the array.

4. Here you create three more Checklist objects. Because you declared the local
variable list as var instead of let, you can re-use it.

Notice how this is performing the same two steps for every new Checklist object
you’re creating?

list = Checklist()
list.name = "Name of the checklist"

It seems likely that every Checklist you’ll ever make will also have a name. You
can make this a requirement by writing your own init method that takes the name
as a parameter. Then you can simply write:

list = Checklist(name: "Name of the checklist")

➤ Go to Checklist.swift and add the new init method:

init(name: String) {
 self.name = name
 super.init()
}

This initializer takes one parameter, name, and places it into the instance variable,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 153

which is also called name.

Because both the parameter and the instance variable are called name, you use
self.name to refer to the instance variable.

If you tried to do this,

init(name: String) {
 name = name
 super.init()
}

then Swift wouldn’t understand that the first name referred to the instance variable.

To disambiguate, you use self. Recall that self refers to the object that you’re in,
so self.name means the name variable of the current Checklist object.

➤ Go back to AllListsViewController.swift and add init?(coder), for real this
time:

required init?(coder aDecoder: NSCoder) {
 lists = [Checklist]()

 super.init(coder: aDecoder)

 var list = Checklist(name: "Birthdays")
 lists.append(list)

 list = Checklist(name: "Groceries")
 lists.append(list)

 list = Checklist(name: "Cool Apps")
 lists.append(list)

 list = Checklist(name: "To Do")
 lists.append(list)
}

That’s a bit shorter than what I showed you before, and it guarantees that new
Checklist objects will now always have their name property filled in.

Note that you don’t write:

var list = Checklist.init(name: "Birthdays")

Even though the method is named init, it’s not a regular method. Initializers are
only used to construct new objects and you write that as:

var object = ObjectName(parameter1: value1, parameter2: value2, . . .)

Depending on the parameters that you specified, Swift will locate the corresponding
init method and call that.

Clear? Great! Let’s continue building the All Lists screen.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 154

➤ Change the tableView(numberOfRowsInSection) method to return the number of
objects in the new array:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return lists.count
}

➤ Finally, change tableView(cellForRowAt) to fill in the cells for the rows:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = makeCell(for: tableView)

 let checklist = lists[indexPath.row]
 cell.textLabel!.text = checklist.name
 cell.accessoryType = .detailDisclosureButton

 return cell
}

➤ Run the app. It looks like this:

The table view shows Checklist objects

It has a table view with cells representing Checklist objects. The rest of the screen
doesn’t do much yet, but it’s a start.

The many ways to make table view cells
Creating a new table view cell in AllListsViewController is a little more involved
than what happens in ChecklistViewController. There you just did the following to
obtain a new table view cell:

let cell = tableView.dequeueReusableCell(

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 155

 withIdentifier: "ChecklistItem", for: indexPath)

But here you have a whole chunk of code to accomplish the same:

let cellIdentifier = "Cell"
if let cell =
 tableView.dequeueReusableCell(withIdentifier: cellIdentifier) {
 return cell
} else {
 return UITableViewCell(style: .default,
 reuseIdentifier: cellIdentifier)
}

The call to dequeueReusableCell(withIdentifier) is still there, except that
previously the storyboard had a prototype cell with that identifier and now it
doesn’t.

If the table view cannot find a cell to re-use (and it won’t until it has enough cells to
fill the entire visible area), this method will return nil and you have to create your
own cell by hand. That’s what happens in the else section.

There are actually two versions of dequeueReusableCell(…), one with an extra for
parameter that takes an IndexPath, and one without. Here you’re using the one
without. The difference is that dequeueReusableCell(withIdentifier, for) only
works with prototype cells. If you tried to use it here, it would crash the app.

There are four ways that you can make table view cells:

1. Using prototype cells. This is the simplest and quickest way. You did this in
ChecklistViewController.

2. Using static cells. You did this for the Add/Edit Item screen. Static cells are
limited to screens where you know in advance which cells you’ll have. The big
advantage with static cells is that you don’t need to provide any of the data
source methods (cellForRowAt and so on).

3. Using a nib file. A nib (also known as a XIB) is like a mini storyboard that only
contains a single customized UITableViewCell object. This is very similar to
using prototype cells, except that you can do it outside of a storyboard.

4. By hand, what you did above. This is how you were supposed to do it in the
early days of iOS. Chances are you’ll run across code examples that do it this
way, especially from older articles and books. It’s a bit more work but also
offers you the most flexibility.

When you create a cell by hand you specify a certain cell style, which gives you a
cell with a preconfigured layout that already has labels and an image view.

For the All Lists View Controller you’re using the “Default” style. Later in this
tutorial you’ll switch it to “Subtitle”, which gives the cell a second, smaller label
below the main label.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 156

Using standard cell styles means you don’t have to design your own cell layout. For
many apps these standard layouts are sufficient so that saves you some work.

Prototype cells and static cells can also use these standard cell styles. The default
style for a prototype or static cell is “Custom”, which requires you to use your own
labels, but you can change that to one of the built-in styles with Interface Builder.

And finally, a gentle warning: Sometimes I see code that creates a new cell for
every row rather than trying to reuse cells. Don’t do that! Always ask the table view
first whether it has a cell available that can be recycled, using one of the
dequeueReusableCell(…) methods.

Creating a new cell for each row will cause your app to slow down, as object
creation is slower than simply re-using an existing object. Creating all these new
objects also takes up more memory, which is a precious commodity on mobile
devices. For the best performance, reuse those cells!

Viewing the checklists
Right now, the data model consists of the lists array from AllListsViewController
that contains a handful of Checklist objects. There is also a separate items array in
ChecklistViewController with ChecklistItem objects.

You may have noticed that when you tap the name of a list, the Checklist screen
slides into view but it currently always shows the same to-do items, regardless of
which list you tapped on.

Each checklist should really have its own to-do items. You’ll work on that later in
this tutorial, as this requires a significant change to the data model.

As a start, let’s set the title of the screen to reflect the chosen checklist.

➤ Add a new instance variable to ChecklistViewController.swift:

var checklist: Checklist!

I’ll explain why the exclamation mark is necessary in a moment.

➤ Change the viewDidLoad() method in ChecklistViewController.swift to:

override func viewDidLoad() {
 super.viewDidLoad()
 title = checklist.name
}

This changes the title of the screen, which is shown in the navigation bar, to the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 157

name of the Checklist object.

You’ll give this Checklist object to the ChecklistViewController when the segue is
performed.

➤ In AllListsViewController.swift, update tableView(didSelectRowAt) to the
following:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let checklist = lists[indexPath.row]
 performSegue(withIdentifier: "ShowChecklist", sender: checklist)
}

As before, you use performSegue() to start the segue. This method has a sender
parameter that you previously set to nil. Now you’ll use it to send along the
Checklist object from the row that the user tapped on.

You can put anything you want into sender. If the segue is performed by the
storyboard (rather than manually like you do here) then sender will refer to the
control that triggered it, for example the UIBarButtonItem object for the Add button
or the UITableViewCell for a row in the table.

But because you start this particular segue by hand, you can put into sender
whatever is most convenient.

Putting the Checklist object into the sender parameter doesn’t give this object to
the ChecklistViewController yet. That happens in “prepare-for-segue”, which you
still need to write for this view controller.

➤ Add the prepare(for:sender:) method to AllListsViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowChecklist" {
 let controller = segue.destination as! ChecklistViewController
 controller.checklist = sender as! Checklist
 }
}

You’ve seen this method before. prepare(for:sender:) is called right before the
segue happens. Here you get a chance to set the properties of the new view
controller before it will become visible.

Note: The segue’s destination is the ChecklistViewController, not a
UINavigationController. That is different from before.

The segue to the Add/Edit Item screen was to a modally presented view
controller that was embedded inside a navigation controller.

This time the “push” segue is directly to the Checklist view controller.

Look in the storyboard and you’ll see there is no navigation controller between
the All Lists screen and the Checklist screen. The segue goes directly from one

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 158

to the other.

Inside prepare(for:sender:), you need to give the ChecklistViewController the
Checklist object from the row that the user tapped. That’s why you put that object
in the sender parameter earlier.

(You could have temporarily stored the Checklist object in an instance variable
instead but passing it along in the sender parameter is much easier.)

All of this happens a short time after ChecklistViewController is instantiated but
just before ChecklistViewController’s view is loaded. That means its viewDidLoad()
method is called after prepare(for:sender:).

At this point, the view controller’s checklist property is filled in with the Checklist
object from sender, and viewDidLoad() can set the title of the screen accordingly.

The steps involved in performing a segue

This sequence of events is why the checklist property is declared as Checklist!
with an exclamation point. That allows its value to be temporarily nil until
viewDidLoad() happens.

nil is normally not an allowed value for variables in Swift but by using the ! you
override that.

Does this sound an awful lot like optionals? The exclamation point turns checklist
into a special kind of optional. It’s very similar to optionals with a question mark,
but you don’t have to write if let to unwrap it.

Such implicitly unwrapped optionals should be used sparingly and with care, as they

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 159

do not have any of the anti-crash protection that normal optionals do.

➤ Run the app and notice that when you tap the row for a checklist, the next
screen properly takes over the title.

The name of the chosen checklist now appears in the navigation bar

Note that giving the Checklist object to the ChecklistViewController does not
make a copy of it.

You only pass the view controller a reference to that object – any changes the user
makes to that Checklist object are also seen by AllListsViewController.

Both view controllers have access to the exact same Checklist object. You’ll use
that to your advantage later in order to add new ChecklistItems to the Checklist.

Type Casts
In prepare(for:sender:) you do this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 . . .
 controller.checklist = sender as! Checklist
 . . .
}

What is that “as! Checklist” thing?

If you’ve been paying attention – of course you have! – then you’ve seen this “as
something” used quite a few times now. This is known as a type cast.

A type cast tells Swift to interpret a value as having a different data type.

(It’s the opposite of what happens to certain actors in the movies. For them
typecasting results in always playing the same character; in Swift, a type cast

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 160

actually changes the character of an object.)

Here, sender has type Any?, meaning that it can be any sort of object: a
UIBarButtonItem, a UITableViewCell, or in this case a Checklist. Thanks to the
question mark it can even be nil.

But the controller.checklist property always expects a proper Checklist object –
it wouldn’t know what to do with a UITableViewCell… Hence, Swift demands that
you only put Checklist objects into the checklist property.

By writing “sender as! Checklist”, you tell Swift that it can safely treat sender as a
Checklist object.

Another example of a typecast is:

let controller = segue.destination as! ChecklistViewController

The segue’s destination property refers to the view controller on the receiving end
of the segue. But obviously the engineers at Apple could not predict beforehand
that we would call it ChecklistViewController.

So you have to cast it from its generic type (UIViewController) to the specific type
used in this app (ChecklistViewController) before you can access any of its
properties.

One final example, from loadChecklistItems():

items = unarchiver.decodeObjectForKey("ChecklistItems")
 as! [ChecklistItem]

The NSKeyedUnarchiver object decodes the object frozen under the key
"ChecklistItems" into an array, but you still need to tell Swift that this really is an
array containing ChecklistItem objects.

Without this type cast, Swift considers it an Any object, which is incompatible with
the data type of the items array.

Note that there is also as? with a question mark. This is for casting optionals, or
when the type cast is allowed to fail. You’ll see some examples of that later.

Don’t worry if any of this goes over your head right now. You’ll see plenty more
examples of type casting in action.

The main reason you need all these type casts is interoperability with the iOS
frameworks that are written in Objective-C. Swift is less forgiving about types than
Objective-C and requires you to be much more explicit (about types; it’s not
encouraging you to swear more).

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 161

Adding and editing checklists
Let’s quickly add the Add Checklist / Edit Checklist screen. This is going to be yet
another UITableViewController, with static cells, and you’ll present it modally from
the AllListsViewController.

If the previous sentence made perfect sense to you, then you’re getting the hang of
this!

➤ Add a new file to the project, ListDetailViewController.swift. You can either
use the Cocoa Touch Class template or the Swift File template for this.

➤ Replace the contents of ListDetailViewController.swift with:

import UIKit

protocol ListDetailViewControllerDelegate: class {
 func listDetailViewControllerDidCancel(
 _ controller: ListDetailViewController)

 func listDetailViewController(_ controller: ListDetailViewController,
 didFinishAdding checklist: Checklist)

 func listDetailViewController(_ controller: ListDetailViewController,
 didFinishEditing checklist: Checklist)
}

class ListDetailViewController: UITableViewController,
 UITextFieldDelegate {
 @IBOutlet weak var textField: UITextField!
 @IBOutlet weak var doneBarButton: UIBarButtonItem!

 weak var delegate: ListDetailViewControllerDelegate?

 var checklistToEdit: Checklist?
}

I simply took the contents of ItemDetailViewController.swift and changed the
names. Also, instead of a property for a ChecklistItem you’re now dealing with a
Checklist.

➤ Add the viewDidLoad() method:

override func viewDidLoad() {
 super.viewDidLoad()

 if let checklist = checklistToEdit {
 title = "Edit Checklist"
 textField.text = checklist.name

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 162

 doneBarButton.isEnabled = true
 }
}

This changes the title of the screen if the user is editing an existing checklist, and it
puts the checklist’s name into the text field already.

➤ Also add the viewWillAppear() method to pop up the keyboard:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 textField.becomeFirstResponder()
}

➤ Add the action methods for the Cancel and Done buttons:

@IBAction func cancel() {
 delegate?.listDetailViewControllerDidCancel(self)
}

@IBAction func done() {
 if let checklist = checklistToEdit {
 checklist.name = textField.text!
 delegate?.listDetailViewController(self,
 didFinishEditing: checklist)
 } else {
 let checklist = Checklist(name: textField.text!)
 delegate?.listDetailViewController(self,
 didFinishAdding: checklist)
 }
}

This should look familiar as well. It’s essentially the same as what the Add/Edit
Item screen does.

To create the new Checklist object in done(), you use its init(name) method and
pass the contents of textField.text into the name parameter.

You cannot write this the way you did for ChecklistItems – this won’t work:

let checklist = Checklist()
checklist.name = textField.text!

Because Checklist does not have an init() method that takes no parameters,
writing Checklist() results in a compiler error. It only has an init(name) method,
and you must always use that initializer to create new Checklist objects.

➤ Also make sure the user cannot select the table cell with the text field:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 return nil
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 163

➤ And finally, add the text field delegate method that enables or disables the Done
button depending on whether the text field is empty or not.

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 let oldText = textField.text! as NSString
 let newText = oldText.replacingCharacters(in: range, with: string)
 as NSString

 doneBarButton.isEnabled = (newText.length > 0)
 return true
}

Again, this is the same as what you did in ItemDetailViewController.

Let’s make the user interface for this new view controller in Interface Builder.

➤ Open the storyboard. Drag a new Navigation Controller from the Object
Library into the canvas and move it below the other view controllers.

Dragging a new navigation controller into the canvas

Interface Builder already assumes that you want to embed a table view controller
inside the navigation controller, so that saves you some work.

➤ Select the new Table View Controller (the one named “Root View Controller”) and
go to the Identity inspector. Change its class to ListDetailViewController.

➤ Change the navigation bar title from “Root View Controller” to Add Checklist.

(If double-clicking the navigation bar doesn’t work, select the Root View Controller

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 164

navigation item in the outline pane and use the Attributes inspector.)

➤ Add Cancel and Done bar button items and hook them up to the action methods
in the view controller. Also connect the Done button to the doneBarButton outlet
and uncheck its Enabled option.

Remember, you can Ctrl-drag from a button to the view controller to connect it to
an action method. To connect an outlet, do it the other way around: Ctrl-drag from
the view controller to the button.

Tip: My Xcode acted a bit buggy and wouldn’t let me drop the bar buttons on the
navigation bar. If this happens to you too, drop them on the navigation item – now
called Add Checklist – in the outline pane. You can also Ctrl-drag in the outline pane
to make the connections to the actions and the outlet.

➤ Change the table view to Static Cells, style Grouped. You only need one cell, so
remove the bottom two.

➤ Drop a new Text Field into the cell. Here are the configuration options:

• Border Style: none

• Font size: 17

• Placeholder text: Name of the List

• Adjust to Fit: disabled

• Capitalization: Sentences

• Return Key: Done

• Auto-enable Return key: check

➤ Ctrl-drag from the view controller to the Text Field and connect it to the
textField outlet.

➤ Then Ctrl-drag the other way around, from the Text Field back to the view
controller, and choose delegate under Outlets. Now the view controller is the
delegate for the text field.

➤ Connect the text field’s Did End on Exit event to the done action on the view
controller.

This completes the steps for converting this view controller to the Add / Edit
Checklist screen:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 165

The finished design of the ListDetailViewController

➤ Go to the All Lists View Controller (the one titled “Checklists”) and drag a Bar
Button Item into its navigation bar. Change it into an Add button.

➤ Ctrl-drag from this new bar button to the navigation controller below to add a
new Present Modally segue.

➤ Click on the new segue and name it AddChecklist.

Your storyboard should now look like this:

The full storyboard: 3 navigation controllers, 4 table view controllers

Almost there. You still have to make the AllListsViewController the delegate for
the ListDetailViewController and then you’re done. Again, it’s very similar to what
you did before.

➤ Declare the All Lists view controller to conform to the delegate protocol by adding
ListDetailViewControllerDelegate to its class line.

You do this in AllListsViewController.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 166

class AllListsViewController: UITableViewController,
 ListDetailViewControllerDelegate {

(This goes all on one line)

➤ Also in AllListsViewController.swift, first extend prepare(for:sender:) to:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowChecklist" {
 . . .
 } else if segue.identifier == "AddChecklist" {
 let navigationController = segue.destination
 as! UINavigationController
 let controller = navigationController.topViewController
 as! ListDetailViewController
 controller.delegate = self
 controller.checklistToEdit = nil
 }
}

The first if doesn’t change. You’ve added a second if for the new “AddChecklist”
segue that you just defined in the storyboard.

As before, you look for the view controller inside the navigation controller (which is
the ListDetailViewController) and set its delegate property to self.

➤ At the bottom of the AllListsViewController.swift, implement the following
delegate methods.

func listDetailViewControllerDidCancel(
 _ controller: ListDetailViewController) {
 dismiss(animated: true, completion: nil)
}

func listDetailViewController(_ controller: ListDetailViewController,
 didFinishAdding checklist: Checklist) {
 let newRowIndex = lists.count
 lists.append(checklist)

 let indexPath = IndexPath(row: newRowIndex, section: 0)
 let indexPaths = [indexPath]
 tableView.insertRows(at: indexPaths, with: .automatic)

 dismiss(animated: true, completion: nil)
}

func listDetailViewController(_ controller: ListDetailViewController,
 didFinishEditing checklist: Checklist) {
 if let index = lists.index(of: checklist) {
 let indexPath = IndexPath(row: index, section: 0)
 if let cell = tableView.cellForRow(at: indexPath) {
 cell.textLabel!.text = checklist.name
 }
 }
 dismiss(animated: true, completion: nil)
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 167

These methods are called when the user presses Cancel or Done inside the new
Add/Edit Checklist screen.

None of this code should surprise you. It’s exactly what you did before but now for
the ListDetailViewController and Checklist objects.

➤ Also add the table view data source method that allows the user to delete
checklists:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 lists.remove(at: indexPath.row)

 let indexPaths = [indexPath]
 tableView.deleteRows(at: indexPaths, with: .automatic)
}

➤ Run the app. Now you can add new checklists and delete them again:

Adding new lists

Note: If the app crashes, then go back and make sure you made all the
connections properly in Interface Builder. It’s really easy to miss just one tiny
thing, but even the tiniest of mistakes can bring the app down in flames…

You can’t edit the names of existing lists yet. That requires one last addition to the
code.

To bring up the Edit Checklist screen, the user taps the blue accessory button. In
the ChecklistViewController that triggered a segue. You could use a segue here
too, but I want to show you another way.

This time you’re not going to use a segue at all, but load the new view controller by
hand from the storyboard. Just because you can.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 168

➤ Add the following tableView(accessoryButtonTappedForRowWith) method to
AllListsViewController.swift. This method comes from the table view delegate
protocol and the name is hopefully obvious enough to guess what it does.

override func tableView(_ tableView: UITableView,
 accessoryButtonTappedForRowWith indexPath: IndexPath) {

 let navigationController = storyboard!.instantiateViewController(
 withIdentifier: "ListDetailNavigationController")
 as! UINavigationController

 let controller = navigationController.topViewController
 as! ListDetailViewController
 controller.delegate = self

 let checklist = lists[indexPath.row]
 controller.checklistToEdit = checklist

 present(navigationController, animated: true, completion: nil)
}

Inside this method you create the view controller object for the Add/Edit Checklist
screen and show it (“present” it) on the screen. This is roughly equivalent to what a
segue would do behind the scenes. The view controller is embedded in a storyboard
and you have to ask the storyboard object to load it.

Where did you get that storyboard object? As it happens, each view controller has a
storyboard property that refers to the storyboard the view controller was loaded
from. You can use that property to do all kinds of things with the storyboard, such
as instantiating other view controllers.

The storyboard property is optional because view controllers are not always loaded
from a storyboard. But this one is, which is why you can use ! to force unwrap the
optional. It’s like using if let, but because you can safely assume storyboard will
not be nil in this app you don’t have to unwrap it inside an if-statement.

The call to instantiateViewController(withIdentifier) takes an identifier string,
"ListDetailNavigationController". That is how you ask the storyboard to create
the new view controller. In your case, this will be the navigation controller that
contains the ListDetailViewController.

You could instantiate the ListDetailViewController directly, but it was designed to
work inside the navigation controller. Instantiating it by itself wouldn’t make much
sense – it would no longer have a title bar or Cancel and Done buttons.

You still have to set this identifier on the navigation controller; otherwise the
storyboard cannot find it.

➤ Open the storyboard and select the navigation controller that points to List
Detail View Controller. Go to the Identity inspector and into the field Storyboard
ID type ListDetailNavigationController:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 169

Setting an identifier on the navigation controller

➤ That should do the trick. Run the app and tap some detail disclosure buttons.

(If the app crashes, make sure the storyboard is saved before you press Run.)

Exercise: Set the ListDetailNavigationController identifier on the List Detail
View Controller instead of the navigation controller and see what happens when you
run the app. Can you explain this? If you can, kudos!

You can find the project files for the app up to this point under 07 - Lists in the
tutorial’s Source Code folder.

Are you still with me?

If at this point your eyes are glazing over and you feel like giving up: don’t.

Learning new things is hard and programming doubly so. Set the tutorial
aside, sleep on it, and come back in a few days.

Chances are that in the mean time you’ll have an a-ha! moment where the
thing that didn’t make any sense suddenly becomes clear as day.

If you have specific questions, join us on the forums. I usually check in a few
times a day to help people out and so do many members of our community.
Don’t be embarrassed to ask for help! forums.raywenderlich.com

Putting to-do items into the checklists
Everything you’ve done in the previous section is all well and good, but checklists
don’t actually contain any to-do items yet.

So far, the list of to-do items and the actual checklists have been separate from
each other.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 170

Let’s change the data model to look like this:

Each Checklist object has an array of ChecklistItem objects

There will still be the lists array that contains all the Checklist objects, but each
of these Checklists will have its own array of ChecklistItem objects.

➤ Add a new property to Checklist.swift:

class Checklist: NSObject {
 var name = ""
 var items = [ChecklistItem]() // add this line
 . . .

This creates a new, empty, array that can hold ChecklistItem objects and assigns it
to the items instance variable.

This is slightly different from what you did before in ChecklistViewController.swift.
There you declared the array and initialized it in two different steps:

var items: [ChecklistItem]

required init?(coder aDecoder: NSCoder) {
 items = [ChecklistItem]()
 . . .
}

But it’s just as easy to do it in a single line, which keeps everything nice and
compact.

If you’re a stickler for completeness, you can also write it as follows:

var items: [ChecklistItem] = [ChecklistItem]()

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 171

I personally don’t like this way of declaring variables because it violates the “DRY”
principle – Don’t Repeat Yourself. Fortunately, thanks to Swift’s type inference, you
can save yourself some keystrokes.

Another way you see it sometimes written is:

var items: [ChecklistItem] = []

The notation [] means: make an empty array of the inferred type.

Regardless of the way you choose to write it, the Checklist object now contains an
array of ChecklistItem objects. Initially, that array is empty.

Earlier you fixed prepare(for:sender:) in AllListsViewController.swift so that tapping
a row makes the app segue into the ChecklistViewController, passing along the
Checklist object that belongs to that row.

Currently ChecklistViewController still gets the ChecklistItem objects from its own
private items array. You will change that so it reads from the items array inside the
Checklist object instead.

➤ Remove the items instance variable from ChecklistViewController.swift.

➤ Then make the following changes in this source file. Anywhere it says items you
change it to say checklist.items instead.

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return checklist.items.count
}

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 . . .
 let item = checklist.items[indexPath.row]
 . . .
}

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 . . .
 let item = checklist.items[indexPath.row]
 . . .
}

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {

 checklist.items.remove(at: indexPath.row)
 . . .
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 172

func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishAdding item: ChecklistItem) {
 let newRowIndex = checklist.items.count
 checklist.items.append(item)
 . . .
}

func itemDetailViewController(_ controller: ItemDetailViewController,
 didFinishEditing item: ChecklistItem) {

 if let index = checklist.items.index(of:item) {
 . . .
}

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 . . .
 controller.itemToEdit = checklist.items[indexPath.row]
 . . .
}

➤ Delete the following methods from ChecklistViewController.swift. (Tip: You
may want to set aside the code from these methods in a temporary file somewhere;
shortly you’ll be using them again in a slightly modified form.)

• func documentsDirectory()

• func dataFilePath()

• func saveChecklistItems()

• func loadChecklistItems()

You recently added these methods to load and save the checklist items from a file.
That is no longer the responsibility of this view controller. It is better for the app’s
design if you make the Checklist object do that.

Loading and saving data model objects really belongs in the data model itself,
rather than in a controller.

But before you get to that, let’s first test whether these changes were successful.
Xcode is complaining about 5 or so errors because you still call the method
saveChecklistItems() at several places in the code. You should remove those lines,
as you will soon be saving the items from a different place.

➤ Remove the lines that call saveChecklistItems().

➤ Also delete init?(coder) from ChecklistViewController.swift.

➤ Press ⌘+B to make sure the app builds without errors.

Fake it ‘til you make it
Let’s add some fake data into the various Checklist objects so that you can test
whether this new design actually works.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 173

In AllListsViewController’s init?(coder) method you already put fake Checklist
objects into the lists array. It’s time to add something new to this method.

➤ Add the following to the bottom of AllListsViewController.swift’s init?
(coder):

for list in lists {
 let item = ChecklistItem()
 item.text = "Item for \(list.name)"
 list.items.append(item)
}

This introduces something you haven’t seen before in these tutorials: the for in
statement. Like if, this is a special language construct.

Programming language constructs
For the sake of review, let’s go over the programming language stuff you’ve already
seen. Most modern programming languages offer at least the following basic
building blocks:

• The ability to remember values by storing things into variables. Some variables
are simple, such as Int and Bool. Others can store objects (ChecklistItem,
UIButton) or even collections of objects (Array).

• The ability to read values from variables and use them for basic arithmetic
(multiply, add) and comparisons (greater than, not equals, etc).

• The ability to make decisions. You’ve already seen the if statement, but there is
also a switch statement that is shorthand for if with many else ifs.

• The ability to group functionality into units such as methods and functions. You
can call those methods and receive back a result value that you can then use in
further computations.

• The ability to bundle functionality (methods) and data (variables) together into
objects.

• The ability to repeat a set of statements more than once. This is what the for in
statement does. There are other ways to perform repetitions as well: while and
repeat. Endlessly repeating things is what computers are good at.

Everything else is built on top of these building blocks. You’ve seen most of these
already, but repetitions (or loops in programmer slang) are new.

If you grok the concepts from this list, you’re well on your way to becoming a

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 174

software developer. And if not, well, just hang in there!

Let’s go through that for loop line-by-line:

for list in lists {
 . . .
}

This means the following: for every Checklist object in the lists array, perform the
statements that are in between the curly braces.

The first time through the loop, the temporary list variable will hold a reference to
the Birthdays checklist, as that is the first Checklist object that you created and
added to the lists array.

Inside the loop you do:

let item = ChecklistItem()
item.text = "Item for \(list.name)"
list.items.append(item)

This should be familiar. You first create a new ChecklistItem object. Then you set
its text property to “Item for Birthdays” because the \(…) placeholder gets replaced
with the name of the Checklist object, list.name, which is “Birthdays”.

Finally, you add this new ChecklistItem to the Birthdays Checklist object, or rather,
to its items array.

That concludes the first pass through this loop. Now the for in statement will look
at the lists array again and sees that there are three more Checklist objects in
that array. So it puts the next one, Groceries, into the list variable and the process
repeats.

This time the text is “Item for Groceries”, which is put into its own ChecklistItem
object that goes into the items array of the Groceries Checklist object.

After that, the loop adds a new ChecklistItem with the text “Item for Cool Apps” to
the Cool Apps checklist, and “Item for To Do” to the To Do checklist.

Then there are no more objects left to look at in the lists array and the loop ends.

Using loops will often save you a lot of time. You could have written this code as
follows:

var item = ChecklistItem()
item.text = "Item for Birthdays"

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 175

lists[0].items.append(item)

item = ChecklistItem()
item.text = "Item for Groceries"
lists[1].items.append(item)

item = ChecklistItem()
item.text = "Item for Cool Apps"
lists[2].items.append(item)

item = ChecklistItem()
item.text = "Item for To Do"
lists[3].items.append(item)

That’s very repetitive, which is a good sign it’s better to use a loop. Imagine if you
had 100 Checklist objects… would you be willing to copy-paste that code a hundred
times? I’d rather use a loop.

Most of the time you won’t even know in advance how many objects you’ll have, so
it’s impossible to write it all out by hand. By using a loop you don’t need to worry
about that. The loop will work just as well for three items as for three hundred.

As you can imagine, loops and arrays work quite well together.

➤ Run the app. You’ll see that each checklist now has its own set of items.

Play with it for a minute, remove items, add items, and verify that each list indeed
is completely separate from the others.

Each Checklist now has its own items

Let’s put the load/save code back in. This time you’ll make AllListsViewController
do the loading and saving.

➤ Add the following to AllListsViewController.swift (you may want to copy this
from that temporary file, but be sure to make the highlighted changes):

func documentsDirectory() -> URL {
 let paths = FileManager.default.urls(for: .documentDirectory,
 in: .userDomainMask)
 return paths[0]
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 176

func dataFilePath() -> URL {
 return documentsDirectory().appendingPathComponent("Checklists.plist")
}

// this method is now called saveChecklists()
func saveChecklists() {
 let data = NSMutableData()
 let archiver = NSKeyedArchiver(forWritingWith: data)

 // this line is different from before
 archiver.encode(lists, forKey: "Checklists")

 archiver.finishEncoding()
 data.write(to: dataFilePath(), atomically: true)
}

// this method is now called loadChecklists()
func loadChecklists() {
 let path = dataFilePath()
 if let data = try? Data(contentsOf: path) {
 let unarchiver = NSKeyedUnarchiver(forReadingWith: data)

 // this line is different from before
 lists = unarchiver.decodeObject(forKey: "Checklists") as! [Checklist]

 unarchiver.finishDecoding()
 }
}

This is mostly identical to what you had before in ChecklistViewController, except
that you load and save the lists array instead of the items array. Note that the key
under which the data gets stored is now "Checklists" instead of "ChecklistItems".
Also, the names of the methods changed slightly.

➤ Change init?(coder) to:

required init?(coder aDecoder: NSCoder) {
 lists = [Checklist]()
 super.init(coder: aDecoder)
 loadChecklists()
}

This gets rid of the test data you put there earlier and makes the loadChecklists()
method do all the work.

You also have to make the Checklist object compliant with NSCoding.

➤ Add the NSCoding protocol in Checklist.swift:

class Checklist: NSObject, NSCoding {

Recall that the NSCoding protocol requires that you add two methods, init?(coder)
and encode(with).

➤ Add those methods to Checklist.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 177

required init?(coder aDecoder: NSCoder) {
 name = aDecoder.decodeObject(forKey: "Name") as! String
 items = aDecoder.decodeObject(forKey: "Items") as! [ChecklistItem]
 super.init()
}

func encode(with aCoder: NSCoder) {
 aCoder.encode(name, forKey: "Name")
 aCoder.encode(items, forKey: "Items")
}

This loads and saves the Checklist’s name and items properties.

➤ Important: Before you run the app, remove the old Checklists.plist file from
the Simulator’s Documents folder.

If you don’t, the app might crash because the internal format of the file no longer
corresponds to the data you’re loading and saving.

Weird crashes

When I first wrote this tutorial, I didn’t think to remove the Checklists.plist file
before running the app. That was a mistake, but the app appeared to work
fine… until I added a new checklist. At that point the app aborted with a
strange error message from UITableView that made no sense at all.

I started to wonder whether I tested the code properly. But then I thought of
the old file, removed it and ran the app again. It worked perfectly. Just to
make sure it was the fault of that file, I put a copy of the old file back and ran
the app again. Sure enough, when I tried to add a new checklist it crashed.

The explanation for this kind of error is that somehow the code managed to
load the old file, even though its format no longer corresponded to the new
data model. This put the table view into a bad state. Any subsequent
operations on the table view caused app to crash.

You’ll run into this type of bug every so often, where the crash isn’t directly
caused by what you’re doing but by something that went wrong earlier on.
These kinds of bugs can be tricky to solve, because you can’t fix them until
you find the true cause.

There is a section devoted to debugging techniques in tutorial 4 because it’s
inevitable that you’ll introduce bugs in your code. Knowing how to find and
eradicate them is an essential skill that any programmer should master – if
only to save you a lot of time and aggravation!

➤ Run the app and add a checklist and a few to-do items.

➤ Exit the app (with the Stop button) and run it again. You’ll see that the list is
empty again. All your to-do items are gone.

You can add all the checklists and items you want, but nothing gets saved anymore.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 178

What’s going on here?

Doing saves differently
Previously, you saved the data whenever the user changed something: adding a
new item, deleting an item, and toggling a checkmark all caused Checklists.plist to
be re-saved. That used to happen in ChecklistViewController.

However, you just moved the saving logic into AllListsViewController. How do you
make sure changes to the to-do items get saved now? The AllListsViewController
doesn’t know when a checkmark is toggled on or off.

You could give ChecklistViewController a reference to the AllListsViewController
and have it call its saveChecklists() method whenever the user changes
something, but that introduces a so-called child-parent dependency and you’ve
been trying hard to avoid those (ownership cycles, remember?).

Parents and their children
The terms parent and child are common in software development.

A parent is an object higher up in some hierarchy; a child is an object lower in the
hierarchy.

In this case, the “hierarchy” represents the navigation flow between the different
screens of the app.

The All Lists screen is the parent of the Checklist screen, because All Lists was
“born” first. It creates a new ChecklistViewController “baby” every time the user
performs the segue.

Likewise, All Lists is also the parent of the List Detail screen. The Item Detail
screen, however, is the child of the Checklist view controller.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 179

Generally speaking, it’s OK if the parent knows everything about its children, but
not the other way around (just like in real life, every parent has horrible secrets
they don’t want their kids to know about… or so I’ve been told).

As a result, you don’t want parent objects to be dependent on their child objects,
but the other way around is fine. So the ChecklistViewController asking the
AllListsViewController to do things is a big no-no.

You may think: ah, I could use a delegate for this. True – and if you thought that
indeed I’m very proud – but instead we’ll rethink our saving strategy.

Is it really necessary to save changes all the time? While the app is running, the
data model sits in working memory and is always up-to-date.

The only time you have to load anything from the file (the long-term storage
memory) is when the app first starts up, but never afterwards. From then on you
always make the changes to the objects in the working memory.

But when changes are made, the file becomes out-of-date. That is why you save
those changes – to keep the file in sync with what is in memory.

The reason you save to a file is so that you can restore the data model in working
memory after the app gets terminated. But until that happens, the data in the
short-term working memory will do just fine.

You just need to make sure that you save the data to the file just before the app
gets terminated. In other words, the only time you save is when you actually need
to keep the data safe.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 180

Not only is this more efficient, especially if you have a lot of data, it also is simpler
to program. You no longer need to worry about saving every time the user makes a
change to the data, only right before the app terminates.

There are three situations in which an app can terminate:

1. While the user is running the app. This doesn’t happen very often anymore, but
earlier versions of iOS did not support multitasking apps. Receiving an incoming
phone call, for example, would kill the currently running app. As of iOS 4, the
app will simply be suspended in the background when that happens.

There are still situations where iOS may forcefully terminate a running app, for
example if the app becomes unresponsive or runs out of memory.

2. When the app is suspended in the background. Most of the time iOS keeps
these apps around for a long time. Their data is frozen in memory and no
computations are taking place. (When you resume a suspended app, it literally
continues from where it left off.)

Sometimes the OS needs to make room for an app that requires a lot of working
memory – often a game – and then it simply kills the suspended apps and wipes
them from memory. The apps are not notified of this.

3. The app crashes. There are ways to detect crashes but handling them can be
very tricky. Trying to deal with the crash may actually make things worse. The
best way to avoid crashes is to make no programming mistakes! :-)

Fortunately for us, iOS will inform the app about significant changes such as, “you
are about to be terminated”, and, “you are about to be suspended”.

You can listen for these events and save your data at that point. That will ensure
the on-file representation of the data model is always up-to-date when the app
does terminate.

The ideal place for handling these notifications is inside the application delegate.
You haven’t spent much time with this object before, but every app has one. As its
name implies, it is the delegate object for notifications that concern the app as a
whole.

This is where you receive the “app will terminate” and “app will be suspended”
notifications.

In fact, if you look inside AppDelegate.swift, you’ll see the methods:

func applicationDidEnterBackground(_ application: UIApplication)

and:

func applicationWillTerminate(_ application: UIApplication)

There are a few others, but these are the ones you need. (The Xcode template put

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 181

helpful comments inside these methods, so you know what to do with them.)

Now the trick is, how do you call AllListsViewController’s saveChecklists()
method from these delegate methods? The app delegate does not know anything
about AllListsViewController yet.

You have to use some trickery to find the All Lists View Controller from within the
app delegate.

➤ Add this new method to AppDelegate.swift:

func saveData() {
 let navigationController = window!.rootViewController
 as! UINavigationController
 let controller = navigationController.viewControllers[0]
 as! AllListsViewController
 controller.saveChecklists()
}

The saveData() method looks at the window property to find the UIWindow object that
contains the storyboard.

UIWindow is the top-level container for all your app’s views. There is only one
UIWindow object in your app (unlike desktop apps, which usually have multiple
windows).

Exercise: Can you explain why you wrote window! with an exclamation point?

Unwrapping optionals
At the top of AppDelegate.swift you can see that window is declared as an optional:

var window: UIWindow?

To unwrap an optional you normally use the if let syntax:

if let w = window {
 // if window is not nil, w is the real UIWindow object
 let navigationController = w.rootViewController
}

As a shorthand you can use optional chaining:

let navigationController = window?.rootViewController

If window is nil, then the app won’t even bother to look at the rest of the
statement and navigationController will also be nil.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 182

For apps that use a storyboard (and most of them do), you’re guaranteed that
window is never nil, even though it is an optional. UIKit promises that it will put a
valid reference to the app’s UIWindow object inside the window variable when the app
starts up.

So why is it an optional? There is a brief moment between when the app is
launched and the storyboard is loaded where the window property does not have a
valid value yet. And if a variable can be nil – no matter how briefly – then Swift
requires it to be an optional.

If you’re sure an optional will not be nil when you’re going to use it, you can force
unwrap it by adding an exclamation point:

let navigationController = window!.rootViewController

That’s exactly what you’re doing in the saveData() method. Force unwrapping is the
simplest way to deal with optionals, but it comes with a danger: if you’re wrong and
the optional is nil, the app will crash. Use with caution!

(You’ve actually used force unwrapping already when you read the text from the
UITextField objects in the Item Detail and List Detail view controllers. The
UITextField text property is an optional String but it will never be nil, which is
why you can read it with textField.text! – the exclamation point converts the
optional String value to a regular String.)

Normally you don’t need to do anything with your UIWindow, but in cases such as
this you have to ask it for its rootViewController. The “root” or “initial” view
controller is the very first scene from the storyboard, the navigation controller all
the way over on the left.

You can see this in Interface Builder because this navigation controller has the big
arrow pointing at it. This is the one:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 183

The left-most navigation controller is the window’s root view controller

(The Attributes inspector for this navigation controller also has the Is Initial View
Controller box checked, that’s the same thing. In the outline pane it is called the
Storyboard Entry Point.)

Once you have the navigation controller, you can find the AllListsViewController.
After all, that’s the view controller that is embedded in the navigation controller.

Unfortunately, the UINavigationController does not have a “rootViewController”
property of its own, so you have to look into its viewControllers array to find it:

let controller = navigationController.viewControllers[0]
 as! AllListsViewController

As usual, a type cast is necessary because the viewControllers array does not
know anything about the types of your own view controllers. Once you have a
reference to AllListsViewController you can call its saveChecklists()method.

It’s a bit of work to dig through the window and navigation controller to find the
view controller you need, but that’s life as an iOS developer.

From the root view controller to the AllListsViewController

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 184

Note: By the way, the UINavigationController does have a topViewController
property but you cannot use it here: the “top” view controller is the screen
that is currently displaying, which may be the ChecklistViewController if the
user is looking at to-do items. You don’t want to send the saveChecklists()
message to that screen – it has no method to handle that message and the
app will crash!

➤ Change the applicationDidEnterBackground() and applicationWillTerminate()
methods to call saveData():

func applicationDidEnterBackground(_ application: UIApplication) {
 saveData()
}

func applicationWillTerminate(_ application: UIApplication) {
 saveData()
}

➤ Run the app, add some checklists, add items to those lists, and set some
checkmarks.

➤ Press Shift+⌘+H or pick Hardware → Home from the Simulator’s menu bar to
make the app go to the background. This simulates what happens when a user taps
the home button on their iPhone.

Look inside the app’s Documents folder using Finder. There is a new Checklists.plist
file here.

➤ Press Stop in Xcode to terminate the app. Run the app again and your data
should still be there. Awesome!

Xcode’s Stop button

Important note: When you press Xcode’s Stop button, the application delegate
will not receive the applicationWillTerminate() notification. Xcode kills the
app without mercy.

Therefore, to test the saving behavior, always simulate a tap on the home
button to make the app go into the background before you press Stop. If you
don’t press Shift+⌘+H first, you’ll lose your data. Caveat developer.

Improving the data model
The above code works but you can still do a little better. You have made data model
objects for Checklist and ChecklistItem but the code for loading and saving the
Checklists.plist file currently lives in AllListsViewController. To follow good
programming practice, we should put that in the data model as well.

I prefer to create a top-level DataModel object for many of my apps. For this app,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 185

DataModel will contain the array of Checklist objects. You can move the code for
loading and saving into this new DataModel object.

➤ Add a new file to the project using the Swift File template. Save it as
DataModel.swift (you don’t need to make this a subclass of anything).

➤ Change DataModel.swift to the following:

import Foundation

class DataModel {
 var lists = [Checklist]()
}

This defines the new DataModel object and gives it a lists property.

Unlike Checklist and ChecklistItem, DataModel does not need to be built on top of
NSObject. It also does not need to conform to the NSCoding protocol.

DataModel will be taking over the responsibilities for loading and saving the to-do
lists from AllListsViewController.

➤ Cut the following methods out of AllListsViewController.swift and paste them
into DataModel.swift:

• func documentsDirectory()

• func dataFilePath()

• func saveChecklists()

• func loadChecklists()

➤ Add an init() method to DataModel.swift:

init() {
 loadChecklists()
}

This makes sure that, as soon as the DataModel object is created, it will attempt to
load Checklists.plist.

The declaration of lists already includes an initial value, so you don’t need to do
anything with it inside init().

Also, you don’t have to call super.init() because DataModel does not have a
superclass (it is not built on NSObject).

Switch to AllListsViewController.swift and make the following changes:

➤ Remove the lists instance variable.

➤ Remove the init?(coder) method.

➤ Add a new instance variable:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 186

var dataModel: DataModel!

The ! is necessary because dataModel will temporarily be nil when the app starts
up. It doesn’t have to be a true optional – with ? – because once dataModel is given
a value, it will never become nil again.

Xcode still finds a number of errors in AllListsViewController.swift. You can no
longer reference the lists variable directly, because it no longer exists. Instead,
you’ll have to ask the DataModel for its lists property.

➤ Everywhere the code for AllListsViewController says lists, replace this with
dataModel.lists. You need to do this in the following methods:

• tableView(numberOfRowsInSection)

• tableView(cellForRowAt)

• tableView(didSelectRowAt)

• tableView(commit, forRowAt)

• tableView(accessoryButtonTappedForRowWith)

• listDetailViewController(didFinishAdding)

• listDetailViewController(didFinishEditing)

Phew, that’s a big list! Fortunately, the change is very simple.

To recap, you created a new DataModel object that owns the array of Checklist
objects and knows how to load and save the checklists and their items.

Instead of its own array, the AllListsViewController now uses this DataModel
object, which it accesses through the dataModel property.

But where does this DataModel object get created? There is no place in the code
that currently does dataModel = DataModel().

The best place for this is in the app delegate. You can consider the app delegate to
be the top-level object in your app. Therefore it makes sense to make it the
“owner” of the data model.

The app delegate then gives this DataModel object to any view controllers that need
to use it.

➤ In AppDelegate.swift, add a new property:

let dataModel = DataModel()

This creates the DataModel object and puts it in a constant named dataModel.

Even though AllListsViewController also has an instance variable named
dataModel, these two things are totally separate from each other. Here you’re only
putting the DataModel object into AppDelegate’s dataModel property.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 187

➤ Simplify the saveData() method to just this:

func saveData() {
 dataModel.saveChecklists()
}

If you run the app now, it will crash at once because AllListsViewController’s own
reference to DataModel is still nil. I told you those nils were no-gooders!

The best place to share the DataModel instance with AllListsViewController is in
the application(didFinishLaunchingWithOptions) method, which gets called as
soon as the app starts up.

➤ Change that method to:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?)
 -> Bool {

 let navigationController = window!.rootViewController
 as! UINavigationController
 let controller = navigationController.viewControllers[0]
 as! AllListsViewController
 controller.dataModel = dataModel

 return true
}

This finds the AllListsViewController by looking in the storyboard (as before) and
then sets its dataModel property. Now the All Lists screen can access the array of
Checklist objects again.

➤ Do a clean build (Product → Clean) and run the app. Verify that everything still
works. Great!

You can find the project files for the app up to this point under 08 - Improved
Data Model in the tutorial’s Source Code folder.

I’m still confused about var and let!
If var makes a variable and let makes a constant, then why were you able to do
this in AppDelegate.swift:

let dataModel = DataModel()

You’d think that when something is constant it cannot change, right?

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 188

Then how come the app lets you add new Checklist objects to DataModel?
Obviously the DataModel object can be changed…

Here’s the trick: Swift makes a distinction between so-called value types and
reference types, and let works a bit differently for both.

An example of a value type is Int. Once you create a constant of type Int you can
never change it afterwards:

let i = 100
i = 200 // not allowed
i += 1 // not allowed

var j = 100
j = 200 // allowed
j += 1 // allowed

The same goes for other value types such as Float, String, and even Array. They
are called value types because the variable or constant directly stores their value.

When you assign the contents of one variable to another, the value is copied into
the new variable:

var s = "hello"
var u = s // u has its own copy of "hello"
s += " there" // s and u are now different

But objects that you define with the keyword class (such as DataModel) are
reference types. The variable or constant does not contain the actual object, only a
reference to the object.

var d = DataModel()
var e = d // e refers to the same object as d
d.lists.remove(at: 0) // this also changes e

You can also write this using let and it would do the exact same thing:

let d = DataModel()
let e = d // e refers to the same object as d
d.lists.remove(at: 0) // this also changes e

So what is the difference between var and let for reference types?

When you use let it is not the object that is constant but the reference to the
object. That means you cannot do this:

let d = DataModel()
d = someOtherDataModel // error: cannot change the reference

The constant d can never point to another object, but the object itself can still
change.

It’s OK if you have trouble wrapping your head around this. The distinction between

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 189

value types and reference types is an important idea in software development, but
also takes a while to understand.

My suggestion is that you use let whenever you can and change to var when the
compiler complains. Note that optionals always need to be var, because being an
optional implies that it can change its value at some point.

Using UserDefaults to remember stuff
You now have an app that lets you create lists and add to-do items to those lists. All
of this data is saved to long-term storage so that even if the app gets terminated,
nothing is lost.

There are some user interface improvements you can make, though.

Imagine the user is on the Birthdays checklist and switches to another app. The
Checklists app is now suspended. It is possible that at some point the app gets
terminated and is removed from memory.

When the user reopens the app some time later it no longer is on Birthdays but on
the main screen. Because it was terminated the app didn’t simply resume where it
left off, but got launched anew.

You might be able to get away with this, as apps don’t get terminated often (unless
your users play a lot of games that eat up memory) but little things like this matter
in iOS apps.

Fortunately, it’s fairly easy to remember whether the user has opened a checklist
and to switch to it when the app starts up.

You could store this information in the Checklists.plist file, but especially for simple
settings such as this there is the UserDefaults object.

UserDefaults works like a dictionary, which is a collection object for storing key-
value pairs. You’ve already seen the array collection, which stores an ordered list of
objects. The dictionary is another very common collection that looks like this:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 190

A dictionary is a collection of key-value pairs

Dictionaries in Swift are handled by the Dictionary object (who would’ve guessed).

You can put objects into the dictionary under a reference key and then retrieve it
later using that key. This is, in fact, how Info.plist works.

The Info.plist file is read into a dictionary and then iOS uses the various keys (on
the left hand) to obtain the values (on the right hand). Keys are usually strings but
values can be any type of object.

To be fair, UserDefaults isn’t a true dictionary, but it certainly acts like one.

When you insert new values into UserDefaults, they are saved somewhere in your
app’s sandbox so these values persist even after the app terminates.

You don’t want to store huge amounts of data inside UserDefaults, but it’s ideal for
small things like settings – and for remembering what screen the app was on when
it closed.

This is what you are going to do:

1. On the segue from the main screen (AllListsViewController) to the checklist
screen (ChecklistViewController), you write the row index of the selected list
into UserDefaults. This is how you’ll remember which checklist was active.

You could have saved the name of the checklist instead of the row index, but
what would happen if two checklists have the same name? Unlikely, but not
impossible. Using the row index guarantees that you’ll always select the proper
one.

2. When the user presses the back button to return to the main screen, you have
to remove this value from UserDefaults again. It is common to set a value such
as this to -1 to mean “no value”.

Why -1? You start counting rows at 0, so you can’t use 0. Positive numbers are
also out of the question, unless you use a huge number such as 1000000 as it’s
very unlikely the user will make that many checklists. -1 is not a valid row index
– and because it’s a negative value it looks weird, making it easy to spot during

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 191

debugging.

(If you’re wondering why you’re not using an optional for this – good question!
– the answer is that UserDefaults cannot handle optionals. Sad face.)

3. If the app starts up and the value from UserDefaults isn’t -1, the user was
previously viewing the contents of a checklist and you have to manually perform
a segue to the ChecklistViewController for the corresponding row.

Phew, it’s more work to explain this in English than writing the actual code. ;-)

Let’s start with the segue from the main screen. Recall that this segue is triggered
from code rather than from the storyboard.

➤ In AllListsViewController.swift, change tableView(didSelectRowAt) to the
following:

override func tableView(_tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 // add this line:
 UserDefaults.standard.set(indexPath.row, forKey: "ChecklistIndex")

 let checklist = dataModel.lists[indexPath.row]
 performSegue(withIdentifier: "ShowChecklist", sender: checklist)
}

In addition to what this method did before, you now store the index of the selected
row into UserDefaults under the key “ChecklistIndex”.

To recognize whether the user presses the back button on the navigation bar, you
have to become a delegate of the navigation controller. Being the delegate means
that the navigation controller tells you when it pushes or pops view controllers on
the navigation stack.

The logical place for this delegate is the AllListsViewController.

➤ Add the delegate protocol to the class line in AllListsViewController.swift:

class AllListsViewController: UITableViewController,
 ListDetailViewControllerDelegate, UINavigationControllerDelegate {

As you can see, a view controller can be a delegate for many other objects at once.

AllListsViewController is now the delegate for both the ListDetailViewController
and the UINavigationController, but also implicitly for the UITableView (because it
is a table view controller).

➤ Add the delegate method to the bottom of AllListsViewController.swift:

func navigationController(
 _ navigationController: UINavigationController,
 willShow viewController: UIViewController,
 animated: Bool) {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 192

 // Was the back button tapped?
 if viewController === self {
 UserDefaults.standard.set(-1, forKey: "ChecklistIndex")
 }
}

This method is called whenever the navigation controller will slide to a new screen.

If the back button was pressed, the new view controller is AllListsViewController
itself and you set the “ChecklistIndex” value in UserDefaults to -1, meaning that no
checklist is currently selected.

Equal or identical
To determine whether the AllListsViewController is the newly activated view
controller, you wrote:

if viewController === self {

Yep, it’s not a typo, that’s three equals signs in a row.

Previously to compare objects you used only two equals signs:

if segue.identifier == "AddItem" {

You may be wondering what the difference is between these two operators. It’s
subtle but important question about identity. (Who said programmers couldn’t be
philosophical?)

If you use ==, you’re checking whether two variables have the same value.

With === you’re checking whether two variables refer to the exact same object.

Imagine two people who are both called Joe. They’re different people who just
happen to have the same name.

If we’d compare them using joe1 === joe2 then the result would be false, as
they’re not the same person.

But joe1.name == joe2.name would be true.

On the other hand, if I’m telling you an amusing (or embarrassing!) story about Joe
and this story seems awfully familiar to you, then maybe we happen to know this
same Joe.

In that case, joe1 === joe2 would be true as well.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 193

By the way, the above code would have worked just fine if you had written,

if viewController == self

with just two equals signs. For objects such as view controllers, equality is tested
by comparing the references, just like === would do. But technically speaking, === is
more correct here than ==.

The only thing that remains is to check at startup which checklist you need to show
and then perform the segue manually. You’ll do that in viewDidAppear().

➤ Add the viewDidAppear() method to AllListsViewController.swift:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 navigationController?.delegate = self

 let index = UserDefaults.standard.integer(forKey: "ChecklistIndex")
 if index != -1 {
 let checklist = dataModel.lists[index]
 performSegue(withIdentifier: "ShowChecklist", sender: checklist)
 }
}

UIKit automatically calls this method after the view controller has become visible.

First, the view controller makes itself the delegate for the navigation controller.

Every view controller has a built-in navigationController property. To access it you
use the notation navigationController?.delegate because it is optional.

(You could also have written navigationController! instead of ?. The difference
between the two is that ! will crash the app if this view controller would ever be
shown outside of a UINavigationController, while ? won’t crash but simply ignore
the rest of that line. For our app, this does not matter.)

Then it checks UserDefaults to see whether it has to perform the segue.

If the value of the “ChecklistIndex” setting is -1, then the user was on the app’s
main screen before the app was terminated and we don’t have to do anything.

However, if the value of the “ChecklistIndex” setting is not -1, then the user was
previously viewing a checklist and the app should segue to that screen. As before,
you place the relevant Checklist object into the sender parameter of
performSegue(withIdentifier, sender).

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 194

The != operator means: not equal. It is the opposite of the == operator. If you’re
mathematically-inclined, with some imagination != looks like ≠. (Some languages
use <> for not equal but that won’t work in Swift.)

Note: It may not be immediately obvious what’s going on here.

viewDidAppear() isn’t just called when the app starts up but also every time
the navigation controller slides the main screen back into view.

Checking whether to restore the checklist screen needs to happen only once
when the app starts, so why did you put this logic in viewDidAppear() if it gets
called more than once?

Here’s the reason:

The very first time AllListsViewController’s screen becomes visible you don’t
want the navigationController(willShow…) delegate method to be called yet,
as that would always overwrite the old value of “ChecklistIndex” with -1,
before you’ve had a chance to restore the old screen.

By waiting to register AllListsViewController as the navigation controller
delegate until it is visible, you avoid this problem. viewDidAppear() is the ideal
place for that, so it makes sense to do it from that method.

However, as mentioned, viewDidAppear() also gets called after the user
presses the back button to return to the All Lists screen. That shouldn’t have
any unwanted side effects, such as triggering the segue again.

Naturally, the navigation controller calls navigationController(willShow…)
when the back button is pressed, but this happens before viewDidAppear().
The delegate method always sets the value of “ChecklistIndex” back to -1, and
as a result viewDidAppear() does not trigger a segue again.

And so it all works out… The logic that you added to viewDidAppear() only does
its job once during app startup. There are other ways to solve this particular
issue but this approach is simple, so I like it.

Is all of this going way over your head? Don’t fret about it. To get a better idea
of what is going on, sprinkle print() statements around the various methods
to see in which order they get called. Change things around to see what the
effect is. Jumping into the code and playing with it is the quickest way to
learn!

Double-check that all the lines with UserDefaults use the same key name,
“ChecklistIndex”. If one of them is misspelled, UserDefaults is reading from and
writing to different items.

➤ Run the app and go to a checklist screen. Exit to the home screen (Shift+⌘+H in
the Simulator), followed by Stop to quit the app.

Tip: You need to exit to the home screen first because UserDefaults may not
immediately save its settings to disk and therefore you may lose your changes if

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 195

you kill the app from within Xcode.

Note: Does the app crash for you at this point? That happens if you didn’t add
any lists or to-do items yet. That’s the exact problem we’re solving in the next
section. You can either comment out the code in viewDidAppear(), add some
to-do items, and enable the code again to try it. Or simply move on to the
next section.

➤ Run the app again and you’ll notice that Xcode immediately switches to the
screen where you were last at. Cool, huh!

Defensive programming
➤ Now do the following: Stop the app and reset the Simulator using the menu item
Simulator → Reset Contents and Settings.

(Just holding down the app icon until it starts to wiggle and then deleting it is not
enough; you need to reset the entire Simulator.)

Then run the app again from within Xcode and watch it crash:

fatal error: Index out of range

The app crashes in viewDidAppear() on the line:

let checklist = dataModel.lists[index]

What’s going on here? Apparently the value of index is not -1, because the code
entered the if-statement.

As it turns out index is 0, even though there should be nothing in UserDefaults yet
because this is a fresh install of the app. The app didn’t write anything in the
“ChecklistIndex” key yet.

Here’s the thing: UserDefaults’s integer(forKey) method returns 0 if it cannot find
the value for the key you specify, but in this app 0 is a valid row index.

At this point the app doesn’t have any checklists yet, so index 0 does not exist in
the lists array. That is why the app crashes.

What you would like instead, is that UserDefaults returns -1 also if nothing is set
yet for “ChecklistIndex”, because to this app -1 means: show the main screen
instead of a specific checklist.

Fortunately, UserDefaults will let you set default values for the default values. Yep,
you read that correctly. Let’s do that in the DataModel object.

➤ Add the following method inside DataModel.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 196

func registerDefaults() {
 let dictionary: [String: Any] = ["ChecklistIndex": -1]

 UserDefaults.standard.register(defaults: dictionary)
}

This creates a new Dictionary instance and adds the value -1 for the key
“ChecklistIndex”.

The square bracket notation is not only used to make arrays but also dictionaries.
The difference is that for a dictionary it always looks like,

[key1: value1, key2: value2, . . .]

while an array is just:

[value1, value2, value3, . . .]

UserDefaults will use the values from this dictionary if you ask it for a key but it
cannot find anything under that key.

➤ Change DataModel.swift’s init() to call this new method:

init() {
 loadChecklists()
 registerDefaults()
}

➤ Run the app again and now it should no longer crash.

Why did you do this in DataModel? Well, I don’t really like to sprinkle all of these
calls to UserDefaults throughout the code.

In fact, let’s move all of the UserDefaults stuff into DataModel.

➤ Add the following to DataModel.swift:

var indexOfSelectedChecklist: Int {
 get {
 return UserDefaults.standard.integer(forKey: "ChecklistIndex")
 }
 set {
 UserDefaults.standard.set(newValue, forKey: "ChecklistIndex")
 }
}

This does something you haven’t seen before. It appears to declare a new instance
variable indexOfSelectedChecklist of type Int, but what are these get { } and set
{ } blocks?

This is an example of a computed property.

There isn’t any storage allocated for this property (so it’s not really a variable).

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 197

Instead, when the app tries to read the value of indexOfSelectedChecklist, the
code in the get block is performed. And when the app tries to put a new value into
indexOfSelectedChecklist, the set block is performed.

From now on you can simply use indexOfSelectedChecklist and it will automatically
update UserDefaults. How cool is that?

You’re doing this so the rest of the code won’t have to worry about UserDefaults
anymore. The other objects just have to use the indexOfSelectedChecklist property
on DataModel.

Hiding implementation details is an important object-oriented programming
principle, and this is one way to do it.

If you decide later that you want to store these settings somewhere else, for
example in a database or in iCloud, then you only have to change this in one place,
in DataModel. The rest of the code will be oblivious to these changes and that’s a
good thing.

➤ Update the code in AllListsViewController.swift to use this new computed
property:

override func viewDidAppear(_animated: Bool) {
 super.viewDidAppear(animated)

 navigationController?.delegate = self

 let index = dataModel.indexOfSelectedChecklist // change this
 if index != -1 {
 let checklist = dataModel.lists[index]
 performSegue(withIdentifier: "ShowChecklist", sender: checklist)
 }
}

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 // change this line
 dataModel.indexOfSelectedChecklist = indexPath.row

 let checklist = dataModel.lists[indexPath.row]
 performSegue(withIdentifier: "ShowChecklist", sender: checklist)
}

func navigationController(
 _ navigationController: UINavigationController,
 willShow viewController: UIViewController,
 animated: Bool) {
 if viewController === self {
 dataModel.indexOfSelectedChecklist = -1 // change this
 }
}

The intent of the code is now much clearer. AllListsViewController no longer has
to worry about the “how” – storing values in UserDefaults – and can simply focus

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 198

on the “what” – changing the index of the selected checklist.

➤ Run the app again and make sure everything still works.

It’s pretty nice that the app now remembers what screen you were on, but this new
feature has also introduced a subtle bug in the app. Here’s how to reproduce it:

➤ Start the app and add a new checklist. Also add a new to-do item to this list.
Now kill the app from within Xcode.

Because you did not exit to the home screen first, the new checklist and its item
were not saved to Checklists.plist.

However, there is a (small) chance that UserDefaults did save its changes to disk
and now thinks this new list is selected. That’s a problem because that list doesn’t
exist anymore (it never made it into Checklists.plist).

UserDefaults will save its changes at indeterminate times so it could have saved
before you terminated the app.

➤ Run the app again and – if you’re lucky? – it will crash with:

fatal error: Index out of range

If you can’t get this error to happen, add the following line to the set block of
indexOfSelectedChecklist and try again. This forces UserDefaults to save its
changes every time indexOfSelectedChecklist changes:

 set {
 UserDefaults.standard.set(newValue, forKey: "ChecklistIndex")
 UserDefaults.standard.synchronize()
 }

The reason for the crash is that UserDefaults and the contents of Checklists.plist
are out-of-sync. UserDefaults thinks the app needs to select a checklist that doesn’t
actually exist. Every time you run the app it will now crash. Yikes!

This situation shouldn’t really happen during regular usage because you used the
Xcode Stop button to kill the app before it had a chance to save the plist file.

Under normal circumstances the user would press the home button. As the app
goes into the background it properly saves both Checklists.plist and UserDefaults
and everything is in sync again.

However, the OS can always decide to terminate the app and then this same
situation could occur.

Even though there’s only a small chance that this can go wrong in practice, you
should really protect the app against it. These are the kinds of bug reports you
don’t want to receive because often you have no idea what the user did to make it
happen.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 199

This is where the practice of defensive programming becomes important. Your code
should always check for such boundary cases and be able to gracefully handle them
even if they are unlikely to occur.

In our case, you can easily fix AllListsViewController’s viewDidAppear() method to
deal with this situation.

➤ Change the if-statement in viewDidAppear() to:

if index >= 0 && index < dataModel.lists.count {

Instead of just checking for index != -1, you now do a more precise check to
determine whether index is valid. It should be between 0 and the number of
checklists in the data model. If not, then you simply don’t segue.

This prevents dataModel.lists[index] from asking for an object at an index that
doesn’t exist.

You haven’t seen the && operator before. This symbol means “logical and”. It is used
as follows:

if something && somethingElse {
 // do stuff
}

This reads: if something is true and something else is also true, then do stuff.

In viewDidAppear() you only perform the segue when index is 0 or greater and also
less than the number of checklists, which means it’s only valid if it lies in between
those two values.

With this defensive check in place, you’re guaranteed that the app will not try to
segue to a checklist that doesn’t exist, even if the data is out-of-sync.

Note: Even though the app remembers what checklist the user was on, it
won’t bother to remember whether the user had the Add/Edit Checklist or
Add/Edit Item screen open.

These kinds of modal screens are supposed to be temporary. You open them to
make a few changes and then close them again. If the app goes to the
background and is terminated, then it’s no big deal if the modal screen
disappears.

At least that is true for this app. If you have an app that allows the user to
make many complicated edits in a modal screen, you may want to persist
those changes when the app closes so the user won’t lose all his work in case
the app is killed.

In this tutorial you used UserDefaults to remember which screen was open,
but iOS actually has a dedicated API for this kind of thing, State Preservation
and Restoration. You can read more about this on raywenderlich.com.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 200

The first-run experience
Let’s use UserDefaults for something else. It would be nice if the first time you ran
the app it created a default checklist for you, simply named “List”, and switched
over to that list. This enables you to start adding to-do items right away.

That’s how the standard Notes app works too: you can start typing a note right
after launching the app for the very first time, but you can also go one level back in
the navigation hierarchy to see a list of all notes.

To pull this off, you need to keep track in UserDefaults whether this is the first time
the user runs the app. If it is, you create a new Checklist object.

You can perform all of this logic inside DataModel.

It’s a good idea to add a new default setting to the registerDefaults() method.
The key for this value is “FirstTime”.

➤ Change the registerDefaults() method in DataModel.swift (don’t miss the
comma after the first line of the dictionary):

func registerDefaults() {
 let dictionary: [String: Any] = ["ChecklistIndex": -1,
 "FirstTime": true]

 UserDefaults.standard.register(defaults: dictionary)
}

The “FirstTime” setting can be a boolean value because it’s either true (this is the
first time) or false (this is any other than the first time).

The value of “FirstTime” needs to be true if this is the first launch of the app after a
fresh install.

➤ Still in DataModel.swift, add a new handleFirstTime() method:

func handleFirstTime() {
 let userDefaults = UserDefaults.standard
 let firstTime = userDefaults.bool(forKey: "FirstTime")

 if firstTime {
 let checklist = Checklist(name: "List")
 lists.append(checklist)

 indexOfSelectedChecklist = 0
 userDefaults.set(false, forKey: "FirstTime")
 userDefaults.synchronize()
 }
}

Here you check UserDefaults for the value of the “FirstTime” key. If the value for
“FirstTime” is true, then this is the first time the app is being run. In that case, you
create a new Checklist object and add it to the array.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 201

You also set indexOfSelectedChecklist to 0, which is the index of this newly added
Checklist object, to make sure the app will automatically segue to the new list in
AllListsViewController’s viewDidAppear().

Finally, you set the value of “FirstTime” to false, so this code won’t be executed
again the next time the app starts up.

➤ Call this new method from DataModel’s init():

init() {
 loadChecklists()
 registerDefaults()
 handleFirstTime()
}

➤ Reset the Simulator to remove the app and its associated data, and run the app
again from Xcode.

Because it’s the first time you run the app (at least from the app’s perspective)
after a fresh install, it will automatically create a new checklist named List and
switch to it.

You can find the project for the app up to this point under 09 - UserDefaults in
the tutorial’s Source Code folder.

Improving the user experience
There are a few small features I’d like to add, just to polish the app a little more.
After all, you’re building a real app here – if you want to make top-notch apps, you
have to pay attention to those details.

Showing the number of to-do items remaining
In the main screen, for each checklist the app will show the number of to-do items
that do not have checkmarks yet:

Each checklist shows how many items are still left to-do

First, you need a way to count these items.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 202

➤ Add the following method to Checklist.swift:

func countUncheckedItems() -> Int {
 var count = 0
 for item in items where !item.checked {
 count += 1
 }
 return count
}

With this method you can ask any Checklist object how many of its ChecklistItem
objects do not yet have their checkmark set. The method returns this count as an
Int value.

You use a for in to loop through the ChecklistItem objects from the items array. If
an item object has its checked property set to false, you increment the local variable
count by 1.

Remember that the ! operator negates the result. So if item.checked is true, then !
item.checked will make it false. You should read it as “where not item.checked”.

Note: If the ! symbol is written in front of something then it is the logical not
operator, as you see here. When the ! is written behind something, it’s related
to optionals. This is another example of a symbol that has more than one
meaning in Swift. The correct interpretation depends on the context where it is
being used.

When the loop is over and you’ve looked at all the objects, you return the total
value of the count to the caller.

Exercise: What would happen if you used let instead of var to make the count
variable?

Answer: When count is a constant, Swift won’t let you change its value, so the line
that does += 1 gives an error message.

By the way, you could also have written the loop as follows:

 for item in items {
 if !item.checked {
 count += 1
 }
 }

This uses the more familiar if statement instead. Personally, I like the brevity of
the for in where loop, but using an if is just as correct.

➤ Go to AllListsViewController.swift and in makeCell(for) change
style: .default to style: .subtitle.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 203

The rest of the code stays the same, except you now use .subtitle for the cell style
instead of .default. The “subtitle” cell style adds a second, smaller label below the
main label. You can use the cell’s detailTextLabel property to access this subtitle
label.

➤ That happens in tableView(cellForRowAt). Add the following line just before
return cell:

cell.detailTextLabel!.text =
 "\(checklist.countUncheckedItems()) Remaining"

You call the countUncheckedItems() method on the Checklist object and put the
count into a new string that you place into the detailTextLabel.

As usual, you use \(…) to do the string interpolation. Notice that you can even call
methods inside interpolated strings. Sweet!

To put text into the cell’s labels, you wrote:

cell.textLabel!.text = someString
cell.detailTextLabel!.text = anotherString

The ! is necessary because textLabel and detailTextLabel are optionals.

The textLabel property is only present on table view cells that use one of the built-
in cell styles; it is nil on custom cell designs. Likewise, not all of the cell styles
have a detail label and detailTextLabel will be nil in those cases.

Here you’re using the “Subtitle” cell style, which is guaranteed to have both labels.
Because these optionals will never be nil for a “Subtitle” cell, you can use ! to
force unwrap them. This turns the optional into an actual object that you can use.

Be careful with this, though… using ! on an optional that is nil will crash your app
immediately.

You could also have written it as:

if let label = cell.textLabel {
 label.text = someString
}
if let label = cell.detailTextLabel {
 label.text = anotherString
}

That is safer – no chance of crashing here – but also a bit more cumbersome.
Writing ! is just more convenient in this case.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 204

➤ Run the app. For each checklist it will now show how many items still remain to
be done.

The cells now have a subtitle label

One problem: The to-do count never changes. If you toggle a checkmark on or off,
or add new items, the “to do” count remains the same. That’s because you create
these table view cells once and never update their labels. (Try it out!)

Exercise: Think of all the situations that will cause this “still to do” count to
change.

Answer:

• The user toggles a checkmark on an item. When the checkmark is set, the count
goes down. When the checkmark gets removed, the count goes up again.

• The user adds a new item. New items don’t have their checkmark set, so adding
a new item should increment the count.

• The user deletes an item. The count should go down but only if that item had no
checkmark.

These changes all happen in the ChecklistViewController but the “still to do” label
is shown in the AllListsViewController.

So how do you let the All Lists View Controller know about this?

If you thought, “That’s easy, let’s use a delegate!”, then you’re starting to get the
hang of this. You could make a new ChecklistViewControllerDelegate protocol that
sends messages when the following things happen:

• the user toggles a checkmark on an item

• the user adds a new item

• the user deletes an item

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 205

But what would the delegate – which would be AllListsViewController – do in
response? It would simply set a new text on the cell’s detailTextLabel in all cases.

The delegate approach sounds good, only you’re going to cheat and not use a
delegate at all. There is a simpler solution and a smart programmer always picks
the simplest way to solve a problem.

➤ Go to AllListsViewController.swift and add the viewWillAppear() method to do
the following:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 tableView.reloadData()
}

Don’t confuse this method with viewDidAppear(). The difference is in the verb: will
versus did. viewWillAppear() is called before viewDidAppear(), when the view is
about to become visible but the animation hasn’t started yet. viewDidAppear() is
called after the view is visible on the screen and the animation has completed.
There may be half a second or so difference between them as the animation takes
place.

The iOS API often does this: there is a “will” method that is invoked before
something happens and a “did” method that is invoked after that something
happened. Sometimes you need to do things before, sometimes after, and having
two methods gives you the ability to choose whichever situation works best for you.

API (ay-pee-eye) stands for Application Programming Interface. When
people say “the iOS API” they mean all the frameworks, objects, protocols and
functions that are provided by iOS that you as a programmer can use to write
apps.

The iOS API consists of everything from UIKit, Foundation, Core Graphics, and
so on. Likewise, when people talk about “the Facebook API” or “the Google
API”, they mean the services that these companies provide that allow you to
write apps for those platforms.

Here, viewWillAppear() tells the table view to reload its entire contents. That will
cause tableView(cellForRowAt) to be called again for every visible row.

When you tap the back button on the ChecklistViewController’s navigation bar, the
AllListsViewController screen will slide back into view. Just before that happens,
viewWillAppear() is called. Thanks to the call to tableView.reloadData() the app
will update all of the table cells, including the detailTextLabels.

Reloading all of the cells may seem like overkill but in this situation you can easily
get away with it. It’s unlikely the All Lists screen will contain many rows (say, less
than 100) and only about 14 visible cells, so reloading them is quite fast. And it
saves you some work of having to make yet another delegate.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 206

Sometimes a delegate is the best solution; sometimes you can simply reload the
entire table.

➤ Run the app and test that it works!

Exercise. Change the label to read “All Done!” when there are no more to-do items
left to check.

Answer: Change the relevant code in tableView(cellForRowAt) to:

let count = checklist.countUncheckedItems()
if count == 0 {
 cell.detailTextLabel!.text = "All Done!"
} else {
 cell.detailTextLabel!.text = "\(count) Remaining"
}

You put the count into a local constant because you refer to it twice. Calculating the
count once and storing it into a temporary constant is more optimal than doing the
same calculation two times.

Exercise: Now update the label to say “No Items” when the list is empty.

Answer:

let count = checklist.countUncheckedItems()
if checklist.items.count == 0 {
 cell.detailTextLabel!.text = "(No Items)"
} else if count == 0 {
 cell.detailTextLabel!.text = "All Done!"
} else {
 cell.detailTextLabel!.text = "\(count) Remaining"
}

Just looking at the result of countUncheckedItems() is not enough. If this returns 0,
you don’t know whether that means all items are checked off or if the list has no
items at all. You also need to look at the total number of items in the checklist, with
checklist.items.count.

The text in the detail label changes depending on how many items are checked off

Little details like these matter – they make your app more fun to use. Ask yourself,
what would make you feel better about having done your chores, the rather bland

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 207

message “0 Remaining” or the joyous exclamation “All Done!”

A short diversion into Functional Programming
Swift is primarily an object-oriented language, but there is another style of writing
code that has become quite popular in recent years: functional programming.

The term “functional” means that programs can be expressed purely in terms of
mathematical functions that transform data.

Unlike the methods and functions in Swift, these mathematical functions are not
allowed to have “side effects”. For any given inputs, a function should always
produce the same output. Methods are much less strict.

Even though Swift is not a purely functional language, it does let you use certain
functional programming techniques in your apps. They can really make your code a
lot shorter.

For example, let’s look at countUncheckedItems() again:

func countUncheckedItems() -> Int {
 var count = 0
 for item in items where !item.checked {
 count += 1
 }
 return count
}

That’s quite a bit of code for something that’s fairly simple. You can actually write
this in a single line of code:

func countUncheckedItems() -> Int {
 return items.reduce(0) { cnt, item in cnt + (item.checked ? 0 : 1) }
}

reduce() is a method that looks at each item and performs the code in the { }
block. Initially, the cnt variable contains the value 0, but after each item it is
incremented by either 0 or 1, depending on whether the item was checked.

When reduce() is done, its return value is the total count of unchecked items.

You don’t have to remember any of this for now, but it’s pretty cool to see that
Swift allows you to express this kind of algorithm very succinctly.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 208

Sorting the lists
Another thing you often need to do with lists is sort them in some particular order.

Let’s sort the list of checklists by name. Currently when you add a new checklist it
is always appended to the end of the table, regardless of alphabetical order.

Before we figure out how to sort an array, let’s think about when you need to
perform this sort:

• When a new checklist is added

• When a checklist is renamed

There is no need to re-sort when a checklist is deleted because that doesn’t have
any impact on the order of the other objects.

Currently you handle these two situations in AllListsViewController’s
implementation of “didFinishAdding” and “didFinishEditing”.

➤ Change these methods to the following:

func listDetailViewController(_ controller: ListDetailViewController,
 didFinishAdding checklist: Checklist) {
 dataModel.lists.append(checklist)
 dataModel.sortChecklists()
 tableView.reloadData()
 dismiss(animated: true, completion: nil)
}

func listDetailViewController(_ controller: ListDetailViewController,
 didFinishEditing checklist: Checklist) {
 dataModel.sortChecklists()
 tableView.reloadData()
 dismiss(animated: true, completion: nil)
}

You were able to remove a whole bunch of stuff from both methods because you
now always do reloadData() on the table view.

It is no longer necessary to insert the new row manually, or to update the cell’s
textLabel. Instead you simply call tableView.reloadData() to refresh the entire
table’s contents.

Again, you can get away with this because the table will only hold a handful of
rows. If this table had hundreds of rows, a more advanced approach might be
necessary. (You could figure out where the new or renamed Checklist object should
be inserted and just update that row.)

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 209

The sortChecklists() method on DataModel is new and you still need to add it. But
before that, we need to have a short discussion about how sorting works.

When you sort a list of items, the app will compare the items one-by-one to figure
out what the proper order is. But what does it mean to compare two Checklist
objects?

In our app we obviously want to sort them by name, but we need some way to tell
the app that’s what we mean.

➤ Add the following method to DataModel.swift:

func sortChecklists() {
 lists.sort(by: { checklist1, checklist2 in
 return checklist1.name.localizedStandardCompare(checklist2.name) ==
 .orderedAscending })
}

Here you tell the lists array that the Checklists it contains should be sorted using
some formula.

That formula is provided in the shape of a closure. You can tell by the { } brackets
around the sorting code; they are what makes it into a closure:

lists.sort(by: { /* the sorting code goes here */ })

You’ve briefly seen closures with the alert box in the Bull’s Eye tutorial. They wrap a
piece of source code into an anonymous, inline method.

The purpose of the closure is to determine whether one Checklist object comes
before another, based on our rules for sorting.

The sort algorithm will repeatedly ask one Checklist object from the list how it
compares to the other Checklist objects using the formula from the closure, and
then shuffles them around until the array is sorted.

This allows sort() to sort the contents of the array in any order you desire. If you
wanted to sort on other criteria all you’d have to do is change the logic inside the
closure.

The actual sorting formula is this:

checklist1.name.localizedStandardCompare(checklist2.name) ==
 .orderedAscending

To compare these two Checklist objects, you’re only looking at their names.

The localizedStandardCompare() method compares the two name strings while
ignoring lowercase vs. uppercase (so “a” and “A” are considered equal) and taking
into consideration the rules of the current locale.

A locale is an object that knows about country and language-specific rules. Sorting

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 210

in German may be different than sorting in English, for example.

That’s all you have to do to sort the array: call sort() and give it a closure with the
logic that compares two Checklist objects.

➤ Just to make sure the existing lists are also sorted in the right order, you should
also call sortChecklists() when the plist file is loaded:

func loadChecklists() {
 let path = dataFilePath()
 if let data = try? Data(contentsOf: path) {
 . . .
 sortChecklists()
 }
}

➤ Run the app and add some new checklists. Change their names and notice that
the list is always sorted alphabetically.

New checklists are always sorted alphabetically

Adding icons to the checklists
Because true iOS developers can’t get enough of view controllers and delegates,
let’s add a new property to the Checklist object that lets you choose an icon. We’re
really going to cement these principles in your mind.

When you’re done, the Add/Edit Checklist screen will look like this:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 211

You can assign an icon to a checklist

You are going to add a row to the Add/Edit Checklist screen that opens a new
screen for picking an icon. This icon picker is a new view controller. You won’t show
it modally this time but push it on the navigation stack so it slides into the screen.

The Resources folder for this tutorial contains a folder named Checklist Icons with
a selection of PNG images that depict different categories.

The various checklist icon images

➤ Add the images from this folder to the asset catalog. Select Assets.xcassets in
the project navigator, click the + button at the bottom and choose Import…

Importing new images into the asset catalog

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 212

Navigate to the Checklist Icons folder and select all the files inside:

Selecting the image files to import

Note: Make sure to select the actual image files, not just the folder.

Click Open to import the images. The asset catalog should now look like this:

The asset catalog after importing the checklist icons

Each image comes with a 2x version for Retina devices and a 3x version for the
iPhone 6s Plus and 7 Plus with its incredible Retina HD screen.

As I pointed out in the previous tutorial, you don’t need low-resolution 1x graphics
anymore. All iPhones, iPads, and iPod touch devices that can run iOS 10 have
Retina 2x or 3x screens.

➤ Add the following property to Checklist.swift:

var iconName: String

The iconName variable holds the filename of the icon image.

➤ Extend init?(coder) and encode(with) to respectively load and save this icon
name in the Checklists.plist file:

required init?(coder aDecoder: NSCoder) {
 name = aDecoder.decodeObject(forKey: "Name") as! String
 items = aDecoder.decodeObject(forKey: "Items") as! [ChecklistItem]

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 213

 iconName = aDecoder.decodeObject(forKey: "IconName") as! String
 super.init()
}

func encode(with aCoder: NSCoder) {
 aCoder.encode(name, forKey: "Name")
 aCoder.encode(items, forKey: "Items")
 aCoder.encode(iconName, forKey: "IconName")
}

Just in case you feel like extending this app with new features of your own,
remember that this is something you need to do for every new property that you
add to Checklist. Otherwise it won’t get saved to the plist file.

Xcode now complains about the init(name) method. Apparently it doesn’t like that
“Property self.iconName is not initialized at super.init call”.

That means iconName doesn’t have a value yet if the Checklist object is initialized
with init(name) instead of init?(coder). And as you know by now, all variables that
are not optionals must always have a value.

➤ Update init(name) to the following:

init(name: String) {
 self.name = name
 iconName = "Appointments"
 super.init()
}

This will give all new checklists the “Appointments” icon.

At this point you just want to see that you can make an icon – any icon – show up
in the table view. When that works you can worry about letting the user pick their
own icons.

➤ Change tableView(cellForRowAt) in AllListsViewController.swift to put the
icon into the table view cell:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 . . .

 cell.imageView!.image = UIImage(named: checklist.iconName)
 return cell
}

Cells using the standard .subtitle cell style come with a built-in UIImageView on the
left. You can simply give it the image and it will automatically appear. Easy peasy.

➤ Before running the app, remove the Checklists.plist file or reset the
Simulator, because by adding the “IconName” field in init?(coder) and
encode(with) you’ve modified the file format again. You don’t want any weird
crashes…

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 214

➤ Run the app and now each checklist should have an alarm clock icon in front of
its name.

The checklists have an icon

Satisfied that this works, you can now change Checklist’s init(name) to give each
Checklist object an icon named “No Icon” by default.

➤ In Checklist.swift, in init(name) change the line that sets iconName to:

iconName = "No Icon"

The “No Icon” image is a fully transparent PNG image with the same dimensions as
the other icons. Using a transparent image is necessary to make all the checklists
line up properly, even if they have no icon.

If you were to set iconName to an empty string instead, the image view in the table
view cell would remain empty and the text would align with the left margin of the
screen. That looks bad when other cells do have icons:

Using an empty image to properly align the text labels (right)

Let’s create the icon picker screen.

➤ Add a new Swift file to the project. Name it IconPickerViewController.

➤ Replace the contents of IconPickerViewController.swift with:

import UIKit

protocol IconPickerViewControllerDelegate: class {
 func iconPicker(_ picker: IconPickerViewController,
 didPick iconName: String)
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 215

class IconPickerViewController: UITableViewController {
 weak var delegate: IconPickerViewControllerDelegate?
}

This defines the IconPickerViewController object, which is a table view controller,
and a delegate protocol that it uses to communicate with other objects in the app.

➤ Add a constant (inside the class brackets) to hold the array of icons:

let icons = [
 "No Icon",
 "Appointments",
 "Birthdays",
 "Chores",
 "Drinks",
 "Folder",
 "Groceries",
 "Inbox",
 "Photos",
 "Trips"]

This is an array that contains a list of icon names. These strings are both the text
you will show on the screen and the name of the PNG file inside the asset catalog.

The icons array is the data model for this table view. Note that it is a non-mutable
array (it is defined with let and arrays are “value” types), because the user cannot
add or delete icons.

This new view controller is a UITableViewController, so you have to implement the
data source methods for the table view.

➤ Add the following methods to the source file:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return icons.count
}

This simply returns the number of icons in the array.

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "IconCell", for: indexPath)

 let iconName = icons[indexPath.row]
 cell.textLabel!.text = iconName
 cell.imageView!.image = UIImage(named: iconName)

 return cell
}

Here you obtain a table view cell and give it text and an image. You will design this

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 216

cell in the storyboard momentarily.

It will be a prototype cell with the cell style “Default” (or “Basic” as it is called in
Interface Builder). Cells with this style already contain a text label and an image
view, which is very convenient.

➤ Open the storyboard. Drag a new Table View Controller from the Object
Library and place it next to the List Detail View Controller (the one that says “Add
Checklist”).

➤ In the Identity inspector, change the class of this new table view controller to
IconPickerViewController.

➤ Select the prototype cell and set its Style to Basic and its (re-use) Identifier to
IconCell.

That takes care of the design for the icon picker. Now you need to have some place
to call it from. To do this, you will add a new row to the Add/Edit Checklist screen.

➤ Go to the List Detail View Controller and add a new section to the table view.
You can do this by changing the Sections field in the Attributes inspector for the
table view from 1 to 2. This will duplicate the existing section.

➤ Delete the Text Field from the new cell; you don’t need it.

➤ Add a Label to this cell and name it Icon.

➤ Set the cell’s Accessory to Disclosure Indicator. That adds a gray chevron.

➤ Add an Image View to the right of the cell. Make it 36 × 36 points big. (Tip: use
the Size inspector for this.)

Note: If you’re on macOS Sierra, Xcode may show the Image View as a white
rectangle, making it very hard to see. I consider this a bug in Xcode (on OS X
El Capitan the Image View shows up as a blue rectangle).

➤ Use the Assistant Editor to add an outlet property for this image view to
ListDetailViewController.swift and name it iconImageView.

Now that you’ve finished the designs for both screens, you can connect them with a
segue.

➤ Ctrl-drag from the “Icon” table view cell to the Icon Picker View Controller and
add a segue of type Selection Segue – Show. (Make sure you’re dragging from
the Table View Cell, not its Content View or any of the other subviews.)

➤ Give the segue the identifier PickIcon.

➤ Thanks to the segue, the new view controller has been given a navigation bar.
Double-click that navigation bar and change its title to Choose Icon.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 217

Note: If Xcode won’t let you change the navigation title, you may first need to
drag a Navigation Item from the Object Library into the view controller. Xcode
is supposed to add this Navigation Item for you, but for some reason (bug?) it
doesn’t.

This part of the storyboard should now look like this:

The Icon Picker view controller in the storyboard

➤ In ListDetailViewController.swift, change the “willSelectRowAt” table view
delegate method to:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if indexPath.section == 1 {
 return indexPath
 } else {
 return nil
 }
}

This is necessary otherwise you cannot tap the “Icon” cell to trigger the segue.

Previously this method always returned nil, which meant tapping on rows was not
possible. Now, however, you want to allow the user to tap the Icon cell, so this
method should return the index-path for that cell.

Because the Icon cell is the only row in the second section, you only have to check
indexPath.section. There is no need to check the row number too. Users still can’t
select the cell with the text field (from section 0).

➤ Run the app and verify that there is now an Icon row in the Add/Edit Checklist
screen. Tapping it will open the Choose Icon screen and show a list of icons.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 218

The icon picker screen

You can press the back button to go back but selecting an icon doesn’t do anything
yet. It just colors the row gray but doesn’t put the icon into the checklist.

To make this work, you have to hook up the icon picker to the Add/Edit Checklist
screen through its own delegate protocol.

➤ First, add an instance variable in ListDetailViewController.swift:

var iconName = "Folder"

You use this variable to keep track of the chosen icon name.

Even though the Checklist object now has an iconName property, you cannot keep
track of the chosen icon in the Checklist object for the simple reason that you may
not always have a Checklist object, i.e. when the user is adding a new checklist.

So you’ll store the icon name in a temporary variable and copy that into the
Checklist’s iconName property at the right time.

You should initialize the iconName variable with something reasonable. Let’s go with
the folder icon. This is only necessary for new Checklists, which get the Folder icon
by default.

➤ Update viewDidLoad() to the following:

override func viewDidLoad() {
 super.viewDidLoad()

 if let checklist = checklistToEdit {
 title = "Edit Checklist"
 textField.text = checklist.name
 doneBarButton.isEnabled = true
 iconName = checklist.iconName // add this
 }

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 219

 iconImageView.image = UIImage(named: iconName) // add this
}

This has two new lines: If the checklistToEdit optional is not nil, then you copy
the Checklist object’s icon name into the iconName instance variable. You also load
the icon’s image file into a new UIImage object and set it on the iconImageView so it
shows up in the Icon row.

Earlier you created a push segue named “PickIcon”. You still need to implement
prepare(for:sender:) in order to tell the IconPickerViewController that this screen
is now its delegate.

➤ Add the following method to ListDetailViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "PickIcon" {
 let controller = segue.destination as! IconPickerViewController
 controller.delegate = self
 }
}

This should have no big surprises for you.

Of course, Xcode has found something to complain about: it does not like that you
wrote “controller.delegate = self”, because (and I quote),

Cannot assign a value of type 'ListDetailViewController' to a value of type
'IconPickerViewControllerDelegate?'

Exercise: What did we forget?

Answer: You haven’t made the view controller conform to the delegate protocol yet,
so Swift won’t let ListDetailViewController become the delegate of the icon picker!

➤ Add the name of that protocol to the class line:

class ListDetailViewController: UITableViewController,
 UITextFieldDelegate, IconPickerViewControllerDelegate {

➤ And add the implementation of the method from that delegate protocol
somewhere inside the ListDetailViewController class:

func iconPicker(_ picker: IconPickerViewController,
 didPick iconName: String) {
 self.iconName = iconName
 iconImageView.image = UIImage(named: iconName)
 let _ = navigationController?.popViewController(animated: true)
}

This puts the name of the chosen icon into the iconName variable to remember it,
and also updates the image view with the new image.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 220

You don’t call dismiss() here but popViewController(animated) because the Icon
Picker is on the navigation stack. When creating the segue you used the segue style
“show” instead of “present modally”, which pushes the new view controller on the
navigation stack. To return you need to “pop” it off again. (dismiss() is for modal
screens only, not for push screens.)

Recall that navigationController is an optional property of the view controller, so
you need to use ? (or !) to access the actual UINavigationController object. By
writing let _ = you tell Xcode you don’t care about the return value from
popViewController() – without this let Xcode gives a warning. The _ symbol is
called the wildcard and you can use it instead of a variable name.

Note: You’ve seen self used to refer to the object itself. Here you’ve written:
self.iconName = iconName

The reason is that iconName can refer to two different things here: 1) the
parameter from the delegate method, and 2) the instance variable.

To remove the ambiguity, you prefix the instance variable with “self.”, so it’s
clear to the compiler which of the two iconNames you intended to use.

➤ Change the done() action so that it puts the chosen icon name into the Checklist
object when the user closes the screen:

@IBAction func done() {
 if let checklist = checklistToEdit {
 checklist.name = textField.text!
 checklist.iconName = iconName // add this
 delegate?.listDetailViewController(self,
 didFinishEditing: checklist)
 } else {
 let checklist = Checklist(name: textField.text!)
 checklist.iconName = iconName // add this
 delegate?.listDetailViewController(self,
 didFinishAdding: checklist)
 }
}

Finally, you must change IconPickerViewController to actually call the delegate
method when a row is tapped.

➤ Add the following method to the bottom of IconPickerViewController.swift:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 if let delegate = delegate {
 let iconName = icons[indexPath.row]
 delegate.iconPicker(self, didPick: iconName)
 }
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 221

And that’s it. You can now set icons on the Checklist objects.

To recap, you:

• added a new view controller object,

• designed its user interface in the storyboard editor, and

• hooked it up to the Add/Edit Checklist screen using a segue and a delegate.

Those are the basic steps you need to take with any new screen that you add.

➤ Run the app to try it out.

You can now give each list its own icon

Achievement unlocked: users can pick icons!

There’s still a small improvement to make to the code. In done(), you currently do
this:

let checklist = Checklist(name: textField.text!)
checklist.iconName = iconName

Setting the icon name can be considered part of the initialization of Checklist, so it
would be nice if you could write:

let checklist = Checklist(name: textField.text!, iconName: iconName)

➤ In ListDetailViewController.swift’s done() method, replace the code that
creates the new Checklist object with the above.

To make this work, you have to add a new init method to Checklist.swift that
takes two parameters: name and iconName.

➤ Add the new init method to Checklist.swift:

init(name: String, iconName: String) {
 self.name = name
 self.iconName = iconName
 super.init()
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 222

Checklist now has three init methods:

• init(name) for when you just have a name

• init(name, iconName) for when you also have an icon name

• init?(coder) for loading the objects from the plist file

Note that at this point init(name) and init(name, iconName) do almost the same
things. Both initializers assign values to self.name and iconName, and call
super.init().

Note: The only difference is that init(name) does not have to use the notation
“self.iconName” because there iconName can only mean one thing.

You can improve on this by making init(name) call init(name, iconName) with "No
Icon" as the value for the iconName parameter.

➤ Replace init(name) with:

convenience init(name: String) {
 self.init(name: name, iconName: "No Icon")
}

Instead of super.init() it now calls self.init(name, iconName).

Because it farms out its work to another init method, init(name) is now known as a
convenience initializer.

It does the same thing as init(name, iconName) but saves you from having to type
iconName: "No Icon" whenever you want to use it.

init(name, iconName) has become the so-called designated initializer for Checklist.
It is the primary way to create new Checklist objects, while init(name) exists only
for the convenience of lazy developers… such as you and me. :-)

➤ Build the app to verify it still works.

Exercise: Give ChecklistItem an init(text) method that is used instead of the
parameter-less init(). Or how about an init(text, checked) method?

Making the app look good
You’re going to keep it simple in this tutorial as far as fancying up the graphics
goes. The standard look of navigation controllers and table views is perfectly
adequate, although a little bland. In the next tutorials you’ll see how you can
customize the look of these UI elements.

Even though this app uses the stock visuals, there is a simple trick to give the app
its own personality: changing the tint color.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 223

The tint color is what UIKit uses to indicate that things can be interacted with, such
as buttons. The default tint color is a medium blue.

The buttons all use the same tint color

Changing the tint color is pretty easy.

➤ Open the storyboard and go to the File inspector (the first tab).

➤ Click Global Tint to open the color picker and choose Red: 4, Green: 169, Blue:
235. That makes the tint color a lighter shade of blue.

Changing the Global Tint color for the storyboard

Tip: If the color picker only shows a black & white bar, then click the box that says
Gray Scale Slider and change it to RGB Sliders.

It would also look nice if the checkmark wasn’t black but used the tint color too.

➤ To make that happen, add the following line to configureCheckmark(for:with:) in
ChecklistViewController.swift:

label.textColor = view.tintColor

➤ Run the app. It already looks a lot more interesting:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 224

The tint color makes the app less plain looking

No app is complete without an icon. The Resources folder for this tutorial contains a
folder named Icon with the app icon image in various sizes. Notice that it uses the
same blue as the tint color.

➤ Add these icons to the asset catalog (Assets.xcassets). Recall that icons go into
the AppIcon section. Simply drag them from the Finder into the slots.

The app icons in the asset catalog

Apps should also have a launch image or launch file. Showing a static picture of the
app’s UI will give the illusion the app is loading faster than it really is. It’s all smoke
and mirrors.

The Xcode template includes the file LaunchScreen.storyboard that is used as
the launch file. With some effort you could make this look like the initial screen of
the app, but there’s an easier solution.

➤ Open the Project Settings screen. In the General tab, scroll down to the App
Icons and Launch Images section.

➤ In the Launch Screen File box, press the arrow and select Main.storyboard.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 225

Changing the launch screen file

This tells the app you’ll be using the design from the storyboard as the launch file.

Upon startup, the app finds the initial view controller and converts it into a static
launch image. For this app that is the All Lists View Controller inside its navigation
controller.

➤ Delete LaunchScreen.storyboard from the project.

➤ From the Product menu choose Clean. It’s also a good idea to delete the app
from the Simulator just so it no longer has any copies of the old launch file lying
around (hold down on the icon until it starts to wiggle, just like on a real iPhone).

➤ Run the app. Just before the real UI appears you should briefly see the following
launch screen:

The empty launch screen

The launch screen simply has a navigation bar and an empty table view. This gives
the illusion the app’s UI has already been loaded but that the data hasn’t been filled
in yet.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 226

Using a proper launch screen makes the app look more professional – and faster!

For many apps you can simply use the main storyboard as the launch file, making it
a no-brainer to add. Besides, you need a launch file to support the larger screens of
the iPhone 6s, 7, and Plus models.

Supporting all iPhone models
The app should run without major problems on all current iPhone models, from the
smallest (iPhone SE) to the largest (iPhone 7 Plus). Table view controllers are very
flexible and will automatically resize to fit the screen, no matter how large or small.
Give it a try in the different Simulators!

Well, I said no major problems. But there are still a few tweaks you can make here
and there.

So far I’ve been showing you screenshots of the iPhone SE simulator, and I also
designed my screens in Interface Builder using the dimensions of the iPhone SE.
But this is what happens when running the app on a larger simulator such as the
iPhone 7 Plus:

The icon is in the wrong place

The icon is no longer nicely aligned on the right. Also try typing some text: it gets
cut off because the text field is too small. Why does this happen?

When you design the user interface for your app in Interface Builder, it doesn’t
automatically fit all possible iPhone models, only the one you’re designing for. You
need to help Interface Builder out and tell it how to adjust your UI for different
screen sizes. That’s where Auto Layout comes in.

What you want to happen is that the image view stays glued to the right edge of
the screen, always at the same distance from the disclosure indicator. When the
view controller grows or shrinks to fit the iPhone screen, the image view should
move along with it.

The solution is to add Auto Layout constraints to the image view that tell the app
what the relationship is between the image view and the edges of the screen.

➤ Select the Icon Image View. Bring up the Pin menu using the icon at the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 227

bottom of the canvas.

➤ First, uncheck Constrain to margins.

➤ Activate the bars at the top and the right so they turn red.

➤ Put checkmarks in front of Width and Height.

➤ For Update Frames choose Items of New Constraints.

Adding constraints to the Image View

➤ Finally, click Add 4 Constraints to finish.

The image view should now look like this:

The Image View with the constraints

Make sure the bars representing the constraints are blue. If they are orange or red
you may have forgotten something in the Pin menu. (Either try again or use the
Editor → Resolve Auto Layout Issues → Update Frames menu item.)

The most important constraint is the one on the right. This tells UIKit that the right-
hand side of the image view should always stick to the right-hand edge of the table
view cell’s content view.

In other words, no matter how wide or narrow the screen is, the image view will
always have the same location relative to the disclosure indicator.

The other three constraints – top, width, and height – were necessary only because
all views must always have enough constraints to determine their position and size.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 228

If you don’t specify any constraints of your own, Interface Builder will come up with
reasonable default constraints. But as soon as you add just one custom constraint,
you’ll have to add the others too.

➤ To verify that your changes do the right thing you don’t necessarily need to run
the app in the simulator. Use the View as: panel at the bottom to switch between
the different iPhone models right inside Interface Builder. If your constraints are
correct, then the icon should always be in the right place.

While you’re at it, you might just as well fix the text field so that it stretches to the
entire width of the screen.

➤ Select the Text Field and in the Pin menu activate the four bars so they all
become red:

Pinning the text field

These options will make the text field stick to the sides of the table view cell. (The
numbers here don’t really matter, so it’s fine if your numbers are slightly different.
The important thing is that there are four red bars to make the four constraints.)

➤ Also do this for the text field on the Add/Edit Item screen.

Now you can type all the way to the edge and then the text will start scrolling:

Type to your heart’s content

Let’s say you enter a very long text. What happens to that text when it gets shown
in the other table view?

There is no problem on the All Lists screen:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 229

Built-in cell styles automatically resize

This table view uses the built-in “Subtitle” cell style, which automatically resizes to
fit the width of the screen. It also truncates the text with … when it becomes too
large.

For the to-do items table, however, the picture doesn’t look so rosy. The text gets
cut off too soon on larger devices:

The text gets cut off

Because this is a custom prototype cell design, you’ll have to add some constraints
to prevent this from happening.

➤ In the storyboard, go to the Checklist screen and select the label inside the
prototype cell.

➤ First use Editor → Size to Fit Content to give the label its ideal size. That
makes it a lot smaller, but that’s OK. Without doing this first you may run into
issues on the next steps. (Don’t worry if doing this also moves the label.)

You want to pin the label to the right edge of the content view so it sticks to the
disclosure button. Let’s make that constraint first.

➤ Open the Pin menu and uncheck Constrain to margins.

➤ Activate the red bar on the right. Give it the value 0 so there is no spacing
between the label and the disclosure button.

➤ As always, set Update Frames to Items of New Constraints. Click Add 1
Constraint to add the new constraint.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 230

Pinning the label to the right

Whoops, that messes up the label:

The label doesn’t have enough constraints yet

Remember that you always need to specify enough constraints to determine the
position and size of a view. Here you only added a constraint for the right edge of
the label, which is not enough.

No panic! This sort of thing is common while you’re adding constraints. To fix it you
simply have to add the missing ones.

➤ With the label still selected, open the Align menu (next to Pin). Check
Vertically in Container. Update Frames should be Items of New Constraints.

Centering the label vertically

Now everything turns blue again. The label has a valid position, both X and Y.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 231

All blue bars but still in the wrong place

Note: Even though you didn’t specify any constraints for the label’s size, the
bars are all blue. How come they are not still orange?

Without size constraints the label uses its contents – the text and the font – to
calculate how big needs to be. This is called the intrinsic content size.

UI components with an intrinsic size, such as UILabel, don’t need to have
Width or Height constraints, but this is only valid if you’ve used Size to Fit
Content to reset the label to its intrinsic size first.

Unfortunately, the label is now right aligned. That’s not what you wanted… the label
should be on the left and just as wide as the cell’s content view.

The easiest way to make this happen is to add a new constraint on the left to glue
the label to the left edge of the screen as well.

You can’t use the Pin menu to make this constraint because that would connect the
label to the checkmark, which is not what you want (the size of the checkmark label
changes depending on whether the check is set or not). Instead, you’ll use another
technique to make the new constraint.

➤ Select the label again. Ctrl-drag from the label to anywhere within the cell.
When you let go, a popup appears. The options inside this popup depend on the
direction you dragged in, so what you see may be slightly different from the
illustration.

To make the constraint, select Leading Space to Container Margin from the
popup.

Ctrl-drag to make a constraint

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 232

This adds a very big blue bar for the new constraint, but doesn’t actually move the
label yet.

The new leading space constraint

➤ Select the blue bar. In the Size inspector, change Constant to 30.

That’s better:

Making the leading space constraint smaller

The label is now pinned to both edges of the table view cell’s content view, so it will
get stretched to however wide the table view cell is.

➤ Run the app and the label should properly truncate:

The label uses as much room as it can

You can find the project for the app up to this point under 10 - UI Improvements
in the tutorial’s Source Code folder.

Extra feature: local notifications
I hope you’re still with me! We have discussed in great detail view controllers,
navigation controllers, storyboards, segues, table views and cells, and the data
model.

These are all essential topics to master if you want to build iOS apps because
almost every app uses these building blocks.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 233

In this section you’re going to expand the app to add a new feature: local
notifications, using the brand new User Notifications framework that is introduced
with iOS 10.

A local notification allows the app to schedule a reminder to the user that will be
displayed even when the app is not running.

You will add a “due date” field to the ChecklistItem object and then remind the user
about this deadline with a local notification.

If this sounds like fun, then keep reading. :-)

The steps for this section are as follows:

• Try out a local notification just to see how it works.

• Allow the user to pick a due date for to-do items.

• Create a date picker control.

• Schedule local notifications for the to-do items, and update them when the user
changes the due date.

Before you wonder about how to integrate this in the app, let’s just schedule a local
notification and see what happens.

By the way, local notifications are different from push notifications (also known as
remote notifications). Push notifications allow your app to receive messages about
external events, such as your favorite team winning the World Series.

Local notifications are more similar to an alarm clock: you set a specific time and
then it “beeps”.

An app is only allowed to show local notifications after it has asked the user for
permission. If the user denies permission, then any local notifications for your app
simply won’t appear. You only need to ask for permission once, so let’s do that first.

➤ Open AppDelegate.swift and add an new import to the top of the file:

import UserNotifications

This tells Xcode that we’re going to use the User Notifications framework.

➤ Add the following to the method application(didFinishLaunchingWithOptions),
just before the return true line:

let center = UNUserNotificationCenter.current()
center.requestAuthorization(options: [.alert, .sound]) {
 granted, error in
 if granted {
 print("We have permission")
 } else {
 print("Permission denied")

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 234

 }
}

Recall that application(didFinishLaunchingWithOptions) is called when the app
starts up. It is the entry point for the app, the first place in the code where you can
do something after the app launches.

Because you’re just playing with these local notifications now, this is a good place
to ask for permission.

You tell iOS that the app wishes to send notifications of type “alert” with a sound
effect. Later you’ll put this code into a more appropriate place.

Things that start with a dot
Throughout the app you’ve seen things like .none, .checkmark, and .subtitle – and
now .alert and .sound. These are enumeration symbols.

An enumeration, or enum for short, is a data type that consists of a list of possible
symbols and their values.

For example, the UNAuthorizationOptions enum contains the symbols:

.badge

.sound

.alert

.carPlay

You can combine these names in an array to define what sort of notifications the
app will show to the user. Here you’ve chosen the combination of an alert and a
sound effect by writing [.alert, .sound].

It’s easy to spot when an enum is being used because of the dot in front of the
symbol name. This is actually shorthand notation; you could also have written it like
this:

center.requestAuthorization(options:
 [UNAuthorizationOptions.alert, UNAuthorizationOptions.sound]) { . . .

Fortunately, Swift is smart enough to realize that .alert and .sound are from the
enum UNAuthorizationOptions, so you can save yourself some keystrokes.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 235

➤ Run the app. You should immediately get a popup asking for permission:

The permission dialog

Tap Allow. The next time you run the app you won’t be asked again; iOS
remembers what you chose.

(If you tapped Don’t Allow – naughty! – then you can always reset the Simulator to
get the permissions dialog again. You can also change the notification options in the
Settings app.)

➤ Stop the app and add the following code to didFinishLaunchingWithOptions:

let content = UNMutableNotificationContent()
content.title = "Hello!"
content.body = "I am a local notification"
content.sound = UNNotificationSound.default()

let trigger = UNTimeIntervalNotificationTrigger(timeInterval: 10,
 repeats: false)
let request = UNNotificationRequest(identifier: "MyNotification",
 content: content, trigger: trigger)
center.add(request)

This creates a new local notification. Because you wrote timeInterval: 10, it will
fire exactly 10 seconds after the app has started.

The UNMutableNotificationContent describes what the local notification will say.
Here you set a text so that an alert message will be shown when the notification
fires. You also set a sound.

Finally, you add the notification to the UNUserNotificationCenter. This object is
responsible for keeping track of all the local notifications and making them appear
when their time is up.

➤ Run the app. Immediately after it has started, exit to the home screen (use the
Hardware → Home menu item on the Simulator).

Wait 10 seconds… I know, it seems like an eternity! After an agonizing 10 seconds a
message should pop up:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 236

The local notification message

➤ Tap the notification to go back to the app.

And that’s a local notification. Pretty cool, huh?

Why did I want you to exit to the home screen? iOS will only show an alert with the
notification message if the app is not currently active.

➤ Stop the app and run it again. This time don’t press Home and just wait.

Well, don’t wait too long – nothing will happen. The local notification does get fired,
but it is not shown to the user. To handle this situation, we must listen somehow to
interesting events that concern these notifications. How? Through a delegate, of
course!

➤ Add the following to AppDelegate’s class declaration:

class AppDelegate: UIResponder, UIApplicationDelegate,
 UNUserNotificationCenterDelegate {

This makes AppDelegate the delegate for the UNUserNotificationCenter.

➤ Also add the following method to AppDelegate.swift:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 willPresent notification: UNNotification,
 withCompletionHandler completionHandler:
 @escaping (UNNotificationPresentationOptions) -> Void) {
 print("Received local notification \(notification)")
}

This method will be invoked when the local notification is posted and the app is still
running. You won’t do anything here except log a message to the debug pane.

When your app is active and in the foreground, it is supposed to handle any fired
notifications in its own manner. Depending on the type of app it may make sense
to react to the notification, for example to show a message to the user or to refresh
the screen.

➤ Finally, tell the UNUserNotificationCenter that AppDelegate is now its delegate.
You do this in application(didFinishLaunchingWithOptions):

center.delegate = self

➤ Run the app again and just wait (don’t press Home).

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 237

After 10 seconds you should see a message in the debug area. It displays
something like this:

Received local notification <UNNotification: 0x7ff54af135e0; date:
2016-07-11 14:21:27 +0000, request: <UNNotificationRequest: . . .
identifier: MyNotification, content: <UNNotificationContent: . . .
title: Hello!, subtitle: (null), body: I am a local notification,
. . .

All right, now you know that it works, you should remove the test code from
AppDelegate.swift because you don’t really want to schedule a new notification
every time the user starts the app.

➤ Remove the the local notification code from didFinishLaunchingWithOptions, but
keep these lines:

let center = UNUserNotificationCenter.current()
center.delegate = self

You can also keep the userNotificationCenter(willPresent…) method, as it will
come in handy when debugging the local notifications.

Extending the data model
Let’s think about how the app will handle these notifications. Each ChecklistItem
will get a due date field (a Date object, which specifies a certain date and time) and
a Bool that says whether the user wants to be reminded of this item or not.

Users might not want to be reminded of everything, so you shouldn’t schedule local
notifications for those items. Such a Bool variable is often called a flag. Let’s name
it shouldRemind.

You will add settings for these two new fields to the Add/Edit Item screen and make
it look like this:

The Add/Edit Item screen now has Remind Me and Due Date fields

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 238

The due date field will require some sort of date picker control. iOS comes with a
cool date picker view that you’ll add into the table view.

First, let’s figure out how and when to schedule the notifications. I can think of the
following situations:

• When the user adds a new ChecklistItem object that has the shouldRemind flag
set, you must schedule a new notification.

• When the user changes the due date on an existing ChecklistItem, the old
notification should be cancelled (if there is one) and a new one scheduled in its
place (if shouldRemind is still set).

• When the user toggles the shouldRemind flag from on to off, the existing
notification should be cancelled. The other way around, from off to on, should
schedule a new notification.

• When the user deletes a ChecklistItem, its notification should be cancelled if it
had one.

• When the user deletes an entire Checklist, all the notifications for those items
should be cancelled.

This makes it obvious that you don’t need just a way to schedule new notifications
but also a way to cancel them.

You should probably also check that you don’t create notifications for to-do items
whose due dates are in the past. I’m sure iOS is smart enough to ignore those
notifications, but let’s be good citizens anyway.

We need some way to associate ChecklistItem objects with their local notifications.
This requires some changes to our data model.

When you schedule a local notification you create a UNNotificationRequest object.
It is tempting to put the UNNotificationRequest object as an instance variable in
ChecklistItem, so you always know what it is. However, this is not the correct
approach.

Instead, you’ll use an identifier. When you create a local notification you need to
give it an identifier, which is just a String. It doesn’t really matter what is in this
string, as long as it is unique for each notification.

To cancel a notification at a later point you don’t use the UNNotificationRequest
object but the identifier you gave it. The right thing to do is to store this identifier in
the ChecklistItem object.

Even though the identifier for the local notification is a String, you’ll give give each
ChecklistItem an identifier that is simply a number. You’ll also save this item ID in
the Checklists.plist file. When it’s time to schedule or cancel a local notification,
you’ll turn that number into a string. Then you can easily find the notification when
you have the ChecklistItem object, or the ChecklistItem object when you have the

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 239

notification object.

Assigning numeric IDs to objects is a common approach when creating data models
– it is very similar to giving records in a relational database a numeric primary key,
if you’re familiar with that sort of thing.

➤ Make these changes to ChecklistItem.swift:

var dueDate = Date()
var shouldRemind = false
var itemID: Int

Note that you called it itemID and not simply “id”. The reason is that id is a special
keyword in Objective-C, and this could cause trouble if you ever wanted to mix your
Swift code with Objective-C code.

The dueDate and shouldRemind variables have initial values, but itemID does not.
That’s why you had to specify the type for itemID – it’s an Int – but not for the
other two variables.

Swift is smart enough to infer that dueDate cannot be anything but a Date, and that
shouldRemind should be a Bool.

You have to extend init?(coder) and encode(with) in order to be able to load and
save these new properties along with the ChecklistItem objects.

➤ Add these lines to init?(coder) in ChecklistItem.swift:

dueDate = aDecoder.decodeObject(forKey: "DueDate") as! Date
shouldRemind = aDecoder.decodeBool(forKey: "ShouldRemind")
itemID = aDecoder.decodeInteger(forKey: "ItemID")

➤ And add the following lines to encode(with):

aCoder.encode(dueDate, forKey: "DueDate")
aCoder.encode(shouldRemind, forKey: "ShouldRemind")
aCoder.encode(itemID, forKey: "ItemID")

For dueDate you call decodeObject(forKey), but for shouldRemind it is decodeBool(),
and for itemID it is decodeInteger(). Why do you need different methods to encode
and decode these things?

This is necessary because the NSCoder system is written in Objective-C and that
language makes a distinction between primitive types and objects.

In Objective-C, Int, Float, and Bool are primitive types. Everything else, such as
String and Date, is an object. That is different from Swift, which basically treats
everything as an object. But because you’re talking to an Objective-C framework
here, you need to play by the rules of Objective-C.

Great, that takes care of saving and loading existing objects.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 240

Xcode has spotted one remaining error: init() still needs to give itemID a value.
That makes sense: you also have to assign an ID to new ChecklistItem objects,
which happens in init().

➤ Make the following changes to init():

override init() {
 itemID = DataModel.nextChecklistItemID()
 super.init()
}

This asks the DataModel object for a new item ID whenever the app creates a new
ChecklistItem object.

Now let’s add this new nextChecklistItemID() method to DataModel. As you can
guess from its name this method will return a new, unique ID every time you call it.

➤ Hop on over to DataModel.swift and add this new method:

class func nextChecklistItemID() -> Int {
 let userDefaults = UserDefaults.standard
 let itemID = userDefaults.integer(forKey: "ChecklistItemID")
 userDefaults.set(itemID + 1, forKey: "ChecklistItemID")
 userDefaults.synchronize()
 return itemID
}

You’re using your old friend UserDefaults again.

This method gets the current “ChecklistItemID” value from UserDefaults, adds 1 to
it, and writes it back to UserDefaults. It returns the previous value to the caller.

The method also does userDefaults.synchronize() to force UserDefaults to write
these changes to disk immediately, so they won’t get lost if you kill the app from
Xcode before it had a chance to save.

This is important because you never want two or more ChecklistItems to get the
same ID.

➤ Add a default value for “ChecklistItemID” to the registerDefaults() method
(note the added comma after “FirstTime”):

func registerDefaults() {
 let dictionary: [String: Any] = ["ChecklistIndex": -1,
 "FirstTime": true,
 "ChecklistItemID": 0]
 . . .
}

The first time nextChecklistItemID() is called it will return the ID 0. The second
time it is called it will return the ID 1, the third time it will return the ID 2, and so
on. The number is incremented by one each time. You can call this method a few
billion times before you run out of unique IDs.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 241

Class methods vs. instance methods
If you are wondering why you wrote,

class func nextChecklistItemID()

and not just:

func nextChecklistItemID()

then I’m glad you’re paying attention. :-)

Adding the class keyword means that you can call this method without having a
reference to the DataModel object.

Remember, you did,

itemID = DataModel.nextChecklistItemID()

instead of:

itemID = dataModel.nextChecklistItemID()

This is because ChecklistItem objects do not have a dataModel property with a
reference to the DataModel object. You could certainly give them such a reference,
but I decided that using a class method was easier.

The declaration of a class method begins with class func. This kind of method
applies to the class as a whole.

So far you’ve been using instance methods. They just have the word func (without
class) and work only on a specific instance of that class.

We haven’t discussed the difference between classes and instances before, and
you’ll get into that in more detail in the next tutorial. For now, just remember that a
method starting with class func allows you to call methods on an object even when
you don’t have a reference to that object.

I had to make a trade-off: is it worth giving each ChecklistItem object a reference
to the DataModel object, or can I get away with a simple class method? To keep
things simple, I chose the latter. It’s very well possible that, if you were to develop
this app further, it would make more sense to give ChecklistItem a dataModel
property instead.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 242

For a quick test to see if assigning these IDs works, you can put them inside the
text that is shown in the ChecklistItem cell label. This is just a temporary thing for
testing purposes, as users couldn’t care less about the internal identifier of these
objects.

➤ In ChecklistViewController.swift, change the configureText(for:with:)
method to:

func configureText(for cell: UITableViewCell,
 with item: ChecklistItem) {
 let label = cell.viewWithTag(1000) as! UILabel

 //label.text = item.text
 label.text = "\(item.itemID): \(item.text)"
}

I have commented out the original line because you want to put that back later. The
new one uses \(…) to add the to-do item’s itemID property into the text.

➤ Before you run the app, make sure to reset the Simulator first or throw away
Checklists.plist from the app’s Documents directory.

You have changed the format of the Checklists.plist file again and reading an
incompatible file may cause crashes.

➤ Run the app and add some checklist items. Each new item should get a unique
identifier. Exit to the home screen (to make sure everything is saved properly) and
stop the app.

Run the app again and add some new items; the IDs for these new items should
start counting at where they left off.

The items with their IDs. Note that the item with ID 3 was deleted in this example.

OK, that takes care of the IDs. Now lets add the “due date” and “should remind”

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 243

fields to the Add/Edit Item screen.

(Keep configureText(for:with:) the way it is for the time being; that will come in
handy with testing the notifications.)

➤ Add the following outlets to ItemDetailViewController.swift:

@IBOutlet weak var shouldRemindSwitch: UISwitch!
@IBOutlet weak var dueDateLabel: UILabel!

➤ Open the storyboard and select the Table View in the Item Detail View Controller
(the one that says “Add Item”).

➤ Add a new section to the table. The easiest way to do this is to increment the
Sections field in the Attributes inspector. This duplicates the existing section
and cell.

➤ Remove the Text Field from the new cell. Drag a new Table View Cell from the
Object Library and drop it below this one, so that the second section has two rows.

You will now design the new cells to look as follows:

The new design of the Add/Edit Item screen

➤ Add a Label to the first cell and give it the text Remind Me. Set the font to
System, size 17.

➤ Also drag a Switch control into the cell. Hook it up to the shouldRemindSwitch
outlet on the view controller. In the Attributes inspector, set its Value to Off so it is
no longer green.

➤ Pin the Switch to the top and right edges of the table view cell. This makes sure
the control will be visible regardless of the width of the device’s screen.

➤ The third cell has two labels: Due Date on the left and the label that will hold the
actual chosen date on the right. You don’t have to add these labels yourself: simply
set the Style of the cell to Right Detail and rename Title to Due Date.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 244

➤ The label on the right should be hooked up to the dueDateLabel outlet. (You may
need to click it a few times before it is selected and you can make the connection.)

You may need to move the Remind Me label and the switch around a bit to align
them nicely with the labels from the “due date” cell. Tip: select the “Due Date” and
“Detail” labels and look in the Size inspector what their margins are (should be 15
points from the edges).

Let’s write the code for this.

➤ Add a new dueDate instance variable to ItemDetailViewController.swift:

var dueDate = Date()

For a new ChecklistItem item, the due date is right now, i.e. Date(). That sounds
reasonable but by the time the user has filled in the rest of the fields and pressed
Done, that due date will be in the past.

But you do have to suggest something here. An alternative default value could be
this time tomorrow, or ten minutes from now, but in most cases the user will have
to pick their own due date anyway.

➤ Change viewDidLoad() to the following:

override func viewDidLoad() {
 super.viewDidLoad()

 if let item = itemToEdit {
 title = "Edit Item"
 textField.text = item.text
 doneBarButton.isEnabled = true
 shouldRemindSwitch.isOn = item.shouldRemind // add this
 dueDate = item.dueDate // add this
 }

 updateDueDateLabel() // add this
}

If there already is an existing ChecklistItem object, you set the switch control to on
or off, depending on the value of the object’s shouldRemind property. If the user is
adding a new item, the switch is initially off (you did that in the storyboard).

You also get the due date from the ChecklistItem.

➤ The updateDueDateLabel() method is new. Add it to the file:

func updateDueDateLabel() {
 let formatter = DateFormatter()
 formatter.dateStyle = .medium
 formatter.timeStyle = .short
 dueDateLabel.text = formatter.string(from: dueDate)
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 245

To convert the Date value to text, you use the DateFormatter object.

The way it works is very straightforward: you give it a style for the date component
and a separate style for the time component, and then ask it to format the Date
object.

You can play with different styles here but space in the label is limited so you can’t
fit in the full month name, for example.

The cool thing about DateFormatter is that it takes the current locale into
consideration so the time will look good to the user no matter where she is on the
globe.

➤ The last thing to change in this file is the done() action. Change it to:

@IBAction func done() {
 if let item = itemToEdit {
 item.text = textField.text!

 item.shouldRemind = shouldRemindSwitch.isOn // add this
 item.dueDate = dueDate // add this

 delegate?.itemDetailViewController(self, didFinishEditing: item)
 } else {
 let item = ChecklistItem()
 item.text = textField.text!
 item.checked = false

 item.shouldRemind = shouldRemindSwitch.isOn // add this
 item.dueDate = dueDate // add this

 delegate?.itemDetailViewController(self, didFinishAdding: item)
 }
}

Here you put the value of the switch control and the dueDate instance variable back
into the ChecklistItem object when the user presses the Done button.

➤ Run the app and change the position of the switch control. The app will
remember this setting when you terminate it (but be sure to exit to the home
screen first).

The due date row doesn’t really do anything yet, however. In order to make that
work, you first have to create a date picker.

Note: Maybe you’re wondering why you’re using an instance variable for the
dueDate but not for shouldRemind.

You don’t need one for shouldRemind because it’s easy to get the state of the
switch control: you just look at its isOn property, which is either true or false.

However, it is hard to read the chosen date back out of the dueDateLabel
because the label stores text (a String), not a Date. So it’s easier to keep track
of the chosen date separately in a Date instance variable.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 246

The date picker
The date picker is not a new view controller. Tapping the Due Date row will insert a
new UIDatePicker component directly into the table view, just like what happens in
the built-in Calendar app.

The date picker in the Add Item screen

➤ Add a new instance variable to ItemDetailViewController.swift, to keep track
of whether the date picker is currently visible:

var datePickerVisible = false

➤ And add the showDatePicker() method:

func showDatePicker() {
 datePickerVisible = true

 let indexPathDatePicker = IndexPath(row: 2, section: 1)
 tableView.insertRows(at: [indexPathDatePicker], with: .fade)
}

This sets the new instance variable to true, and tells the table view to insert a new
row below the Due Date cell. This new row will contain the UIDatePicker.

The question is: where does the cell for this new date picker row come from? You
can’t put it into the table view as a static cell already because then it would always
be visible. You only want to show it after the user taps the Due Date row.

Xcode has a cool new feature that lets you add additional views to a scene that are
not immediately visible. That’s a great solution to this problem!

➤ Open the storyboard and go to the Add Item scene. From the Object Library,
pick up a new Table View Cell. Don’t drag it into the view controller itself but into
the scene dock at the top:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 247

Dragging a table view cell into the scene dock

After dragging, the storyboard should look like this:

The new table view cell sits in its own area

The new Table View Cell object belongs to the scene but it is not (yet) part of the
scene’s table view.

The cell is a bit too small to fit a date picker, so first you’ll make it bigger.

➤ Select the Table View Cell and in the Size inspector set the Height to 217. The
date picker is 216 points tall, plus one point for the separator line at the bottom of
the cell.

➤ In the Attributes inspector, set Selection to None so this cell won’t turn gray
when you tap on it.

➤ From the Object Library, drag a Date Picker into the cell. It should fit exactly.

➤ Use the Pin menu to glue the Date Picker to the four sides of the cell. Turn off
Constrain to margins and then select the four bars to make them red (they all
should be 0).

When you’re done, the new cell looks like this:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 248

The finished date picker cell

So how do you get this cell into the table view? First, make two new outlets and
connect them to the cell and the date picker, respectively. That way you can refer to
these views from code.

➤ Add these lines to ItemDetailViewController.swift:

@IBOutlet weak var datePickerCell: UITableViewCell!
@IBOutlet weak var datePicker: UIDatePicker!

Back in the storyboard, take a look at that scene dock again. Besides an icon for
the table view cell you just added it also has a round yellow icon. This represents
the view controller.

➤ To connect the outlet, simply Ctrl-drag from that yellow icon to the gray icon for
the Table View Cell, and select the datePickerCell outlet:

Ctrl-drag between the icons in the scene dock

➤ To connect the date picker, Ctrl-drag from the yellow icon to the big Date Picker
above it and select the datePicker outlet.

Great! Now that you have outlets for the cell and the date picker inside it, you can
write the code to add them to the table view.

Normally you would implement the tableView(cellForRowAt) method, but
remember that this screen uses a table view with static cells. Such a table view
does not have a data source and therefore does not use “cellForRowAt”.

If you look in ItemDetailViewController.swift you won’t find that method

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 249

anywhere. However, with a bit of trickery you can override the data source for a
static table view and provide your own methods.

➤ Add the tableView(cellForRowAt) method to ItemDetailViewController.swift:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 if indexPath.section == 1 && indexPath.row == 2 {
 return datePickerCell
 } else {
 return super.tableView(tableView, cellForRowAt: indexPath)
 }
}

Danger: You shouldn’t really mess around too much with this method when it’s
being used by a static table view, because it may interfere with the inner workings
of those static cells. But if you’re careful you can get away with it.

The if-statement checks whether “cellForRowAt” is being called with the index-
path for the date picker row. If so, it returns the new datePickerCell that you just
designed. This is safe to do because the table view from the storyboard doesn’t
know anything about row 2 in section 1, so you’re not interfering with an existing
static cell.

For any index-paths that are not the date picker cell, this method will call through
to super (which is UITableViewController). This is the trick that makes sure the
other static cells still work.

➤ You also need to override tableView(numberOfRowsInSection):

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if section == 1 && datePickerVisible {
 return 3
 } else {
 return super.tableView(tableView, numberOfRowsInSection: section)
 }
}

If the date picker is visible, then section 1 has three rows. If the date picker isn’t
visible, you can simply pass through to the original data source.

➤ Likewise, you also need to provide the tableView(heightForRowAt) method:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 if indexPath.section == 1 && indexPath.row == 2 {
 return 217
 } else {
 return super.tableView(tableView, heightForRowAt: indexPath)
 }
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 250

So far the cells in your table views all had the same height (44 points), but this is
not a hard requirement. By providing the “heightForRowAt” method you can give
each cell its own height.

The UIDatePicker component is 216 points tall, plus 1 point for the separator line,
making for a total row height of 217 points.

The date picker is only made visible after the user taps the Due Date cell, which
happens in tableView(didSelectRowAt).

➤ Add that method:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 tableView.deselectRow(at: indexPath, animated: true)
 textField.resignFirstResponder()

 if indexPath.section == 1 && indexPath.row == 1 {
 showDatePicker()
 }
}

This calls showDatePicker() when the index-path indicates that the Due Date row
was tapped. It also hides the on-screen keyboard if that was visible.

At this point you have most of the pieces in place, but the Due Date row isn’t
actually tap-able yet. That’s because ItemDetailViewController.swift already has
a “willSelectRowAt” method that always returns nil, causing taps on all rows to be
ignored.

➤ Change tableView(willSelectRowAt) to:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if indexPath.section == 1 && indexPath.row == 1 {
 return indexPath
 } else {
 return nil
 }
}

Now the Due Date row responds to taps, but the other rows don’t.

➤ Run the app to try it out. Add a new checklist item and tap the Due Date row.

Whoops. The app crashes. After some investigating I found that when you override
the data source for a static table view cell, you also need to provide the delegate
method tableView(indentationLevelForRowAt).

That’s not a method you’d typically use, but because you’re messing with the data
source for a static table view you do need to override it. I told you this was a little
tricky.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 251

➤ Add the tableView(indentationLevelForRowAt) method:

override func tableView(_ tableView: UITableView,
 indentationLevelForRowAt indexPath: IndexPath) -> Int {
 var newIndexPath = indexPath
 if indexPath.section == 1 && indexPath.row == 2 {
 newIndexPath = IndexPath(row: 0, section: indexPath.section)
 }
 return super.tableView(tableView,
 indentationLevelForRowAt: newIndexPath)
}

The reason the app crashed on this method was that the standard data source
doesn’t know anything about the cell at row 2 in section 1 (the one with the date
picker), because that cell isn’t part of the table view’s design in the storyboard.

So after inserting the new date picker cell the data source gets confused and it
crashes the app. To fix this, you have to trick the data source into believing there
really are three rows in that section when the date picker is visible.

➤ Run the app again. This time the date picker cell shows up where it should:

The date picker appears in a new cell

Interacting with the date picker should change the date in the Due Date row but
currently this has no effect (try it out: spin the wheels).

You have to listen to the date picker’s “Value Changed” event. That event gets sent
whenever the wheels settle on a new value. For that, you need to add a new action
method.

➤ Add the dateChanged() method to ItemDetailViewController.swift:

@IBAction func dateChanged(_ datePicker: UIDatePicker) {
 dueDate = datePicker.date
 updateDueDateLabel()
}

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 252

This is pretty simple. It updates the dueDate instance variable with the new date
and then updates the text on the Due Date label.

➤ In the storyboard, Ctrl-drag from the Date Picker to the view controller and
select the dateChanged: action method. Now everything is properly hooked up.

(You can verify that the action method is indeed connected to the date picker’s
Value Changed event by looking at the Connections inspector.)

➤ Run the app to try it out. When you turn the wheels on the date picker, the text
in the Due Date row updates too. Cool.

However, when you edit an existing to-do item, the date picker does not show the
date from that item. It always starts on the current date and time.

➤ Add the following line to the bottom of showDatePicker():

datePicker.setDate(dueDate, animated: false)

This gives the proper date to the UIDatePicker component.

➤ Verify that it works: click on the (i) button from an existing to-do item,
preferably one you made a while ago, and confirm that the date picker shows the
same date and time as the Due Date label. Excellent!

Speaking of the label, it would be nice if this becomes highlighted when the date
picker is active. You can use the tint color for this (that’s also what the Calendar
app does).

➤ Change showDatePicker() one last time:

func showDatePicker() {
 datePickerVisible = true

 let indexPathDateRow = IndexPath(row: 1, section: 1)
 let indexPathDatePicker = IndexPath(row: 2, section: 1)

 if let dateCell = tableView.cellForRow(at: indexPathDateRow) {
 dateCell.detailTextLabel!.textColor =
 dateCell.detailTextLabel!.tintColor
 }

 tableView.beginUpdates()
 tableView.insertRows(at: [indexPathDatePicker], with: .fade)
 tableView.reloadRows(at: [indexPathDateRow], with: .none)
 tableView.endUpdates()

 datePicker.setDate(dueDate, animated: false)
}

This sets the textColor of the detailTextLabel to the tint color. It also tells the
table view to reload the Due Date row. Without that, the separator lines between
the cells don’t update properly.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 253

Because you’re doing two operations on the table view at the same time – inserting
a new row and reloading another – you need to put this in between calls to
beginUpdates() and endUpdates(), so that the table view can animate everything at
the same time.

➤ Run the app. The date now appears in blue:

The date label appears in the tint color while the date picker is visible

When the user taps the Due Date row again, the date picker should disappear. If
you try that right now the app will crash – what did you expect! – which obviously
won’t win it many favorable reviews.

➤ Add the new hideDatePicker() method:

func hideDatePicker() {
 if datePickerVisible {
 datePickerVisible = false

 let indexPathDateRow = IndexPath(row: 1, section: 1)
 let indexPathDatePicker = IndexPath(row: 2, section: 1)

 if let cell = tableView.cellForRow(at: indexPathDateRow) {
 cell.detailTextLabel!.textColor = UIColor(white: 0, alpha: 0.5)
 }

 tableView.beginUpdates()
 tableView.reloadRows(at: [indexPathDateRow], with: .none)
 tableView.deleteRows(at: [indexPathDatePicker], with: .fade)
 tableView.endUpdates()
 }
}

This does the opposite of showDatePicker(). It deletes the date picker cell from the
table view and restores the color of the date label to medium gray.

➤ Change tableView(didSelectRowAt) to toggle between the visible and hidden
states:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 254

 tableView.deselectRow(at: indexPath, animated: true)
 textField.resignFirstResponder()

 if indexPath.section == 1 && indexPath.row == 1 {
 if !datePickerVisible {
 showDatePicker()
 } else {
 hideDatePicker()
 }
 }
}

There is another situation where it’s a good idea to hide the date picker: when the
user taps inside the text field.

It won’t look very nice if the keyboard partially overlaps the date picker, so you
might as well hide it. The view controller is already the delegate for the text field,
making this easy.

➤ Add the textFieldDidBeginEditing() method:

func textFieldDidBeginEditing(_ textField: UITextField) {
 hideDatePicker()
}

And with that you have a cool inline date picker!

➤ Run the app and verify that hiding the date picker works, also when you activate
the text field.

Scheduling the local notifications
One of the principles of object-oriented programming is that objects can do as
much as possible themselves. Therefore, it makes sense that the ChecklistItem
object can schedule its own notifications.

➤ Add the following method to ChecklistItem.swift:

func scheduleNotification() {
 if shouldRemind && dueDate > Date() {
 print("We should schedule a notification!")
 }
}

This compares the due date on the item with the current date. You can always get
the current time by making a new Date object with Date().

The statement dueDate > Date() compares the two dates and returns true if
dueDate is in the future and false if it is in the past.

If the due date is in the past, the print() will not be performed.

Note the use of the && “and” operator. You only print the text when the Remind Me

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 255

switch is set to “on” and the due date is in the future.

You will call this method when the user presses the Done button after adding or
editing a to-do item.

➤ In the done() action in ItemDetailViewController.swift, add the following line
just before the call to didFinishEditing and also before `didFinishaAdding:

item.scheduleNotification()

➤ Run the app and try it out. Add a new item, set the switch to ON but don’t
change the due date. Press Done.

There should be no message in the debug area because the due date has already
passed (it is several seconds in the past by the time you press Done).

➤ Add another item, set the switch to ON, and choose a due date in the future.

When you press Done now, there should be a print in the debug area (“We should
schedule a notification!”).

Now that you’ve verified the method is called in the proper place, let’s actually
schedule a new local notification object. First consider the case of a new to-do item
being added.

➤ In ChecklistItem.swift, change scheduleNotification() to:

func scheduleNotification() {
 if shouldRemind && dueDate > Date() {
 // 1
 let content = UNMutableNotificationContent()
 content.title = "Reminder:"
 content.body = text
 content.sound = UNNotificationSound.default()

 // 2
 let calendar = Calendar(identifier: .gregorian)
 let components = calendar.dateComponents(
 [.month, .day, .hour, .minute], from: dueDate)
 // 3
 let trigger = UNCalendarNotificationTrigger(
 dateMatching: components, repeats: false)
 // 4
 let request = UNNotificationRequest(
 identifier: "\(itemID)", content: content, trigger: trigger)
 // 5
 let center = UNUserNotificationCenter.current()
 center.add(request)

 print("Scheduled notification \(request) for itemID \(itemID)")
 }
}

You’ve seen this code before when you tried out local notifications for the first time,

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 256

but there are a few differences.

1. Put the item’s text into the notification message.

2. Extract the month, day, hour, and minute from the dueDate. We don’t care about
the year or the number of seconds – the notification doesn’t need to be
scheduled with millisecond precision, on the minute is precise enough.

3. To test the local notifications you used a UNTimeIntervalNotificationTrigger,
which scheduled the notification to appear after a number of seconds. Here,
you’re using a UNCalendarNotificationTrigger, which shows the notification at
the specified date.

4. Create the UNNotificationRequest object. Important here is that we convert the
item’s numeric ID into a String and use it to identify the notification. That is
how you’ll be able to find this notification later in case you need to cancel it.

5. Add the new notification to the UNUserNotificationCenter.

Xcode is not so impressed with this new code and gives a bunch of error messages.

What is wrong here? UNUserNotificationCenter and the other objects are provided
by the User Notifications framework – you can tell by the “UN” in their names.

However, ChecklistItem hasn’t used any code from that framework until now. The
only frameworks object it has used, NSObject and NSCoder, came from another
framework, Foundation.

➤ To tell ChecklistItem about the User Notifications framework, you need to add
the following line to the top of the file, below the other import:

import UserNotifications

Now the errors disappear like snow in the sun.

There’s another small problem, though. If you’ve reset the Simulator recently (and
you probably have when you made the most recent data model changes) then the
app no longer has permission to send local notifications.

➤ Try it out. Run the app, add a new checklist item, set the due date a minute into
the future, and press Done. You should not see a notification.

You can’t assume the app has permission anymore. When you were just messing
around at this beginning of this section, you placed the permission request code in
the AppDelegate and ran it immediately upon launch. That’s not recommended.

Don’t you just hate those apps that prompt you for ten different things before
you’ve even had a chance to properly look at them? Let’s be a bit more user
friendly with our own app!

➤ Add the following method to ItemDetailViewController.swift:

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 257

@IBAction func shouldRemindToggled(_ switchControl: UISwitch) {
 textField.resignFirstResponder()

 if switchControl.isOn {
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound]) {
 granted, error in /* do nothing */
 }
 }
}

When the switch is toggled to ON, this prompts the user for permission to send
local notifications. Once the user has given permission, the app won’t put up a
prompt again.

➤ Also add an import UserNotifications or the above method won’t compile.

➤ Open the storyboard and connect the shouldRemindToggled: action to the
switch control.

➤ Test it out. Run the app, add a new checklist item, set the due date a minute into
the future, press Done and exit to the home screen.

Wait one minute (patience…) and the notification should appear. Pretty cool!

The local notification when the app is in the background

That takes care of the case where you’re adding a new notification. There are two
situations left: 1) the user edits an existing item, and 2) the user deletes an item.
Let’s do editing first.

When the user edits an item, the following situations can occur:

• Remind Me was switched off and is now switched on. You have to schedule a new
notification.

• Remind Me was switched on and is now switched off. You have to cancel the
existing notification.

• Remind Me stays switched on but the due date changes. You have to cancel the
existing notification and schedule a new one.

• Remind Me stays switched on but the due date doesn’t change. You don’t have to

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 258

do anything.

• Remind Me stays switched off. Here you also don’t have to do anything.

Of course, in all those situations you’ll only schedule the notification if the due date
is in the future.

Phew, that’s quite a list. It’s always a good idea to take stock of all possible
scenarios before you start programming because this gives you a clear picture of
everything you need to tackle.

It may seem like you need to write a lot of logic here to deal with all these
situations, but actually it turns out to be quite simple.

First you’ll look if there is an existing notification for this to-do item. If there is, you
simply cancel it. Then you determine whether the item should have a notification
and if so, you schedule a new one.

That should take care of all the above situations, even if sometimes you simply
could have left the existing notification alone. The algorithm is crude, but effective.

➤ Add the following method to ChecklistItem.swift:

func removeNotification() {
 let center = UNUserNotificationCenter.current()
 center.removePendingNotificationRequests(
 withIdentifiers: ["\(itemID)"])
}

This removes the local notification for this ChecklistItem, if it exists. Note that
removePendingNotificationRequests() requires an array of identifiers, so we first
put our itemID into a string with \(…) and then into an array using [].

➤ Call this new method from to the top of scheduleNotification():

func scheduleNotification() {
 removeNotification()
 . . .
}

Let’s try it out.

➤ Run the app and add a to-do item with a due date two minutes into the future. A
new notification will be scheduled. Go to the home screen and wait until it shows
up.

➤ Edit the item and change the due date to three minutes into the future. The old
notification will be removed and a new one scheduled for the new time.

➤ Add a new to-do item with a due date two minutes into the future. Edit the to-do
item but now set the switch to OFF. The old notification will be removed and no new
notification will be scheduled.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 259

➤ Edit again and put the time a few minutes into the future but don’t change
anything else; no new notification will be scheduled because the switch is still off.

These tests should also work if you terminate the app in between.

There is one last case to handle: deletion of the ChecklistItemobject. This can
happen in two ways:

1. the user can delete an individual item using swipe-to-delete,

2. the user can delete an entire checklist in which case all its ChecklistItem
objects are also deleted.

An object is notified when it is about to be deleted using the deinit message. You
can simply implement this method, look if there is a scheduled notification for this
item and then cancel it.

➤ Add the following to the bottom of ChecklistItem.swift:

deinit {
 removeNotification()
}

That’s all you have to do. The special deinit method will be invoked when you
delete an individual ChecklistItem but also when you delete a whole Checklist –
because all its ChecklistItems will be destroyed as well, as the array they are in is
deallocated.

➤ Run the app and try it out. First schedule some notifications a minute or so into
the future and then remove that to-do item or its entire checklist. Wait until the due
date comes and you shouldn’t get a notification.

Once you’re convinced everything works, you can remove the print() statements.
They are only temporary for debugging purposes. You probably don’t want to leave
them in the final app. The print() statements won’t hurt any, but the end user
can’t see those messages anyway.

➤ Also remove the item ID from the label in the ChecklistViewController – that
was only used for debugging.

You can find the final project files for the Checklists app under 11 - Local
Notifications in the tutorial’s Source Code folder.

That’s a wrap!
Things should be starting to make sense by now. I’ve thrown you into the deep end
by writing an entire app from scratch, and we’ve touched on a number of advanced
topics already, but hopefully you were able to follow along quite well with what
we’ve been doing. Kudos for sticking with it until the end!

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 260

It’s OK if you’re still a bit fuzzy on the details. Sleep on it for a bit and keep
tinkering with the code. Programming requires its own way of thinking and you
won’t learn that overnight. Don’t be afraid to do this tutorial again from the start –
it will make more sense the second time around!

This lesson focused mainly on UIKit and its most important controls and patterns.
In the next lesson we’ll take a few steps back to talk more about the Swift language
itself and of course you’ll build another cool app.

Here is the final storyboard for Checklists:

The final storyboard

I had trouble fitting that on my screen!

Take a well-deserved break, and when you’re ready continue on to the next tutorial,
where you’ll make an app that knows its place! :-)

Haven’t had enough yet? Here are some challenges to sink your teeth into:

Exercise: Put the due date in a label on the table view cells under the text of the
to-do item.

Exercise: Sort the to-do items list based on the due date. This is similar to what
you did with the list of Checklists except that now you’re sorting ChecklistItem
objects and you’ll be comparing Date objects instead of strings.

iOS Apprentice Tutorial 2: Checklists

raywenderlich.com 261

	Tutorial 2: Checklists
	Your own to-do app
	Playing with table views
	Model-View-Controller
	Adding new items to the checklist
	The Add Item screen
	Editing existing checklist items
	Saving and loading the checklist items
	Multiple checklists
	Putting to-do items into the checklists
	Using UserDefaults to remember stuff
	Improving the user experience
	Extra feature: local notifications
	That’s a wrap!

